目录
1.朴素贝叶斯原理
2.基于的朴素贝叶斯的文本分类的sklearn实现
2.1首先基于sklearn的dataset数据集,贴上朴素贝叶斯手写数字识别的历程。
2.2sklearn朴素贝贝叶斯文本分类的实现
直接贴上自己的朴素贝叶斯(参考书籍为西瓜书)学习笔记:
# @Author : wpf
# @Email : [email protected]
# @File : 12.py
# @Software: PyCharm Community Edition
from sklearn import datasets, model_selection, naive_bayes
import matplotlib.pyplot as plt
# 可视化手写识别数据集Digit Dataset
def show_digits():
digits = datasets.load_digits()
fig = plt.figure()
for i in range(20):
ax = fig.add_subplot(4, 5, i + 1)
ax.imshow(digits.images[i], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()
show_digits()
# 加载Digit数据集
def load_data():
digits = datasets.load_digits()
return model_selection.train_test_split(digits.data, digits.target,
test_size=0.25, random_state=0)
def test_GaussianNB(*data):
X_train, X_test, y_train, y_test = data
cls = naive_bayes.GaussianNB()
cls.fit(X_train, y_train)
print('GaussianNB Classifier')
print('Training Score: %.2f' % cls.score(X_train, y_train))
print('Test Score: %.2f' % cls.score(X_test, y_test))
print(X_test)
pre = cls.predict(X_test)
print(pre)
X_train, X_test, y_train, y_test = load_data()
print(test_GaussianNB(X_train, X_test, y_train, y_test))
def test_MultinomialNB(*data):
X_train, X_test, y_train, y_test = data
cls = naive_bayes.MultinomialNB()
cls.fit(X_train, y_train)
print('MultinomialNB Classifier')
print('Training Score: %.2f' % cls.score(X_train, y_train))
print('Test Score: %.2f' % cls.score(X_test, y_test))
X_train, X_test, y_train, y_test = load_data()
print(test_MultinomialNB(X_train, X_test, y_train, y_test))
def test_BernoulliNB(*data):
X_train, X_test, y_train, y_test = data
cls = naive_bayes.BernoulliNB()
cls.fit(X_train, y_train)
print('BernoulliNB Classifier')
print('Training Score: %.2f' % cls.score(X_train, y_train))
print('Test Score: %.2f' % cls.score(X_test, y_test))
X_train, X_test, y_train, y_test = load_data()
print(test_BernoulliNB(X_train, X_test, y_train, y_test))
import os
import random
import jieba #处理中文
#import nltk #处理英文
from sklearn.naive_bayes import MultinomialNB
import matplotlib.pyplot as plt
# 文本处理,也就是样本生成过程
def text_processing(folder_path, test_size=0.2):
folder_list = os.listdir(folder_path)
data_list = []
class_list = []
# 遍历文件夹
for folder in folder_list:
new_folder_path = os.path.join(folder_path, folder)
files = os.listdir(new_folder_path)
# 读取文件
j = 1
for file in files:
if j > 100: # 怕内存爆掉,只取100个样本文件,你可以注释掉取完
break
with open(os.path.join(new_folder_path, file), 'rb') as fp:
text = fp.read()
## 是的,随处可见的jieba中文分词
# jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数,不支持windows
word_cut = jieba.cut(text, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertor
word_list = list(word_cut) # genertor转化为list,每个词unicode格式
# jieba.disable_parallel() # 关闭并行分词模式
data_list.append(word_list) # 训练集list #list里套list,每个list是没篇文章分完词的Unicode编码
class_list.append(folder) # 类别,即文件夹的名字(代表类别)
j += 1
## 粗暴地划分训练集和测试集
data_class_list = list(zip(data_list, class_list)) # 将列表对应元素合并,创建一个元组队的列表
random.shuffle(data_class_list)
index = int(len(data_class_list) * test_size) + 1 # 20% 当做训练集,index为19
train_list = data_class_list[index:] # 19-89共71个设为训练集
test_list = data_class_list[:index] # 0-18共19个设为测试集
train_data_list, train_class_list = zip(*train_list) # 将映射的元组unzip成原来的两个list
test_data_list, test_class_list = zip(*test_list)
# 其实可以用sklearn自带的部分做
# train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size)
# 统计词频放入all_words_dict
all_words_dict = {} # 字典类型
for word_list in train_data_list:
for word in word_list: # 遍历训练集中每个词语
if word in all_words_dict:
all_words_dict[word] += 1
else:
all_words_dict[word] = 1
# key函数利用词频进行降序排序
all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f: f[1], reverse=True) # 内建函数sorted参数需为list
all_words_list = list(zip(*all_words_tuple_list))[0] # 将元组分成两个list,只要第一个list,all_words_list为训练集中所有词语按词频排序的list
return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list
#粗暴的词统计
def make_word_set(words_file):
words_set = set()#set类型没有重复的元素
with open(words_file, 'rb') as fp:
for line in fp.readlines():#按行读,每行是一个停用词
word = line.strip().decode("utf-8")#去除首位空格
if len(word)>0 and word not in words_set: # 去重
words_set.add(word)
return words_set
# 选取特征词
#去掉停用词,和词频高的(比较normal)的词,得到说有的特征词集,构成词袋
def words_dict(all_words_list, deleteN, stopwords_set=set()):
feature_words = []
n = 1
for t in range(deleteN, len(all_words_list), 1):#去掉词频较高的前deleteN个词,可能是停用词或比较normal的词
if n > 1000: # feature_words的维度1000
break
if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1