保存模型的参数,加载已保存的参数的network的结构必须和之前的network的所有结构一模一样
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 放在 import tensorflow as tf 之前才有效
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets
# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
x = tf.reshape(x, [28 * 28])
y = tf.cast(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
return x, y
# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train)) # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess) # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train)) # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000 # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train) # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test)) # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess) # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test)) # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000 # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test) # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片
# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([
layers.Dense(500, activation=tf.nn.relu), # 降维:784-->500
layers.Dense(300, activation=tf.nn.relu), # 降维:500-->300
layers.Dense(100, activation=tf.nn.relu), # 降维:300-->100
layers.Dense(10)]) # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784]) # 28*28=784,None表示样本数量,是不确定的值。
network.summary() # 打印神经网络model的简要信息
# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2) # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
network.save_weights('weights.ckpt')
print('\n================saved weights================')
del network
print('================del network================')
# 七、创建一个和所加载参数的原始network一模一样的network
print('================创建一个和所加载参数的原始network一模一样的network================')
network = keras.Sequential([
layers.Dense(500, activation=tf.nn.relu), # 降维:784-->500
layers.Dense(300, activation=tf.nn.relu), # 降维:500-->300
layers.Dense(100, activation=tf.nn.relu), # 降维:300-->100
layers.Dense(10)]) # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784]) # 28*28=784,None表示样本数量,是不确定的值。
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
network.load_weights('weights.ckpt')
print('================loaded weights================')
# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
# 九、模型上线应用
sample = next(iter(dataset_batch_test)) # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
y = tf.argmax(y, axis=1) # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
打印结果:
X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>,type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>,type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>,type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 500) 392500
_________________________________________________________________
dense_1 (Dense) (None, 300) 150300
_________________________________________________________________
dense_2 (Dense) (None, 100) 30100
_________________________________________________________________
dense_3 (Dense) (None, 10) 1010
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 113ms/step - loss: 2.7174 - accuracy: 0.1086
Epoch 2/5
3/3 [==============================] - 3s 492ms/step - loss: 2.6596 - accuracy: 0.1666 - val_loss: 1.6333 - val_accuracy: 0.4709
Epoch 3/5
3/3 [==============================] - 2s 115ms/step - loss: 1.5516 - accuracy: 0.4968
Epoch 4/5
3/3 [==============================] - 2s 255ms/step - loss: 1.0690 - accuracy: 0.6475 - val_loss: 0.7587 - val_accuracy: 0.7859
Epoch 5/5
3/3 [==============================] - 2s 115ms/step - loss: 0.7137 - accuracy: 0.7955
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5240 - accuracy: 0.8493
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
================saved weights================
================del network================
================创建一个和所加载参数的原始network一模一样的network================
================loaded weights================
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 22ms/step - loss: 0.5223 - accuracy: 0.8486
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([6 3 7 ... 5 1 0], shape=(5000,), dtype=int64)
tf.Tensor([6 3 7 ... 3 1 0], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++
Process finished with exit code 0
保存整个模型,加载后再根据network的通常做法进行操作。
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 放在 import tensorflow as tf 之前才有效
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, datasets
# 一、获取数据集
(X_train, Y_train), (X_test, Y_test) = datasets.mnist.load_data()
print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
# 二、数据处理
# 预处理函数:将numpy数据转为tensor
def preprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
x = tf.reshape(x, [28 * 28])
y = tf.cast(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
return x, y
# 2.1 处理训练集
# print('X_train.shpae = {0},Y_train.shpae = {1}------------type(X_train) = {2},type(Y_train) = {3}'.format(X_train.shape, Y_train.shape, type(X_train), type(Y_train)))
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, Y_train)) # 此步骤自动将numpy类型的数据转为tensor
dataset_train = dataset_train.map(preprocess) # 调用map()函数批量修改每一个元素数据的数据类型
dataset_train = dataset_train.shuffle(len(X_train)) # 打散dataset_train中的样本顺序,防止图片的原始顺序对神经网络性能的干扰
print('dataset_train = {0},type(dataset_train) = {1}'.format(dataset_train, type(dataset_train)))
batch_size_train = 20000 # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_train = dataset_train.batch(batch_size_train) # 将dataset_batch_train中每sample_num_of_each_batch_train张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_train张图片
print('dataset_batch_train = {0},type(dataset_batch_train) = {1}'.format(dataset_batch_train, type(dataset_batch_train)))
# 2.2 处理测试集
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, Y_test)) # 此步骤自动将numpy类型的数据转为tensor
dataset_test = dataset_test.map(preprocess) # 调用map()函数批量修改每一个元素数据的数据类型
dataset_test = dataset_test.shuffle(len(X_test)) # 打散样本顺序,防止图片的原始顺序对神经网络性能的干扰
batch_size_test = 5000 # 每个batch里的样本数量设置100-200之间合适。
dataset_batch_test = dataset_test.batch(batch_size_test) # 将dataset_test中每sample_num_of_each_batch_test张图片分为一个batch,读取一个batch相当于一次性并行读取sample_num_of_each_batch_test张图片
# 三、构建神经网络结构:Dense 表示全连接神经网络,激活函数用 relu
network = keras.Sequential([
layers.Dense(500, activation=tf.nn.relu), # 降维:784-->500
layers.Dense(300, activation=tf.nn.relu), # 降维:500-->300
layers.Dense(100, activation=tf.nn.relu), # 降维:300-->100
layers.Dense(10)]) # 降维:100-->10,最后一层一般不需要在此处指定激活函数,在计算Loss的时候会自动运用激活函数
network.build(input_shape=[None, 784]) # 28*28=784,None表示样本数量,是不确定的值。
network.summary() # 打印神经网络model的简要信息
# 四、设置神经网络各个参数
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
# 五、给神经网络喂数据,训练神经网络模型参数
print('\n++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.fit(dataset_batch_train, epochs=5, validation_data=dataset_batch_test, validation_freq=2) # validation_freq参数表示每多少个epoch做一次验证/validation
print('++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
# 六、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
network.save('model.h5')
print('\n================saved total model================')
del network
print('================del network================')
# 七、从磁盘加载保存的整体模型(包括所有参数、结构...)
print('================loaded model from file================')
network = tf.keras.models.load_model('model.h5', compile=False)
network.compile(optimizer=optimizers.Adam(lr=0.01),
loss=tf.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
# 八、模型评估 test/evluation
print('\n++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
network.evaluate(dataset_batch_test)
print('++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
# 九、模型上线应用
sample = next(iter(dataset_batch_test)) # 从 dataset_batch_test 中取一个batch数据做模拟
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]
y = tf.argmax(y, axis=1) # convert back to number
pred = tf.argmax(pred, axis=1)
print('\n++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++')
print(pred)
print(y)
print('++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++')
打印结果:
X_train.shpae = (60000, 28, 28),Y_train.shpae = (60000,)------------type(X_train) = <class 'numpy.ndarray'>,type(Y_train) = <class 'numpy.ndarray'>
dataset_train = <ShuffleDataset shapes: ((784,), (10,)), types: (tf.float32, tf.float32)>,type(dataset_train) = <class 'tensorflow.python.data.ops.dataset_ops.ShuffleDataset'>
dataset_batch_train = <BatchDataset shapes: ((None, 784), (None, 10)), types: (tf.float32, tf.float32)>,type(dataset_batch_train) = <class 'tensorflow.python.data.ops.dataset_ops.BatchDataset'>
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 500) 392500
_________________________________________________________________
dense_1 (Dense) (None, 300) 150300
_________________________________________________________________
dense_2 (Dense) (None, 100) 30100
_________________________________________________________________
dense_3 (Dense) (None, 10) 1010
=================================================================
Total params: 573,910
Trainable params: 573,910
Non-trainable params: 0
_________________________________________________________________
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
Epoch 1/5
3/3 [==============================] - 2s 119ms/step - loss: 2.4869 - accuracy: 0.2464
Epoch 2/5
3/3 [==============================] - 2s 514ms/step - loss: 3.5169 - accuracy: 0.3786 - val_loss: 1.5471 - val_accuracy: 0.5026
Epoch 3/5
3/3 [==============================] - 2s 116ms/step - loss: 1.4532 - accuracy: 0.5238
Epoch 4/5
3/3 [==============================] - 2s 273ms/step - loss: 0.9930 - accuracy: 0.6789 - val_loss: 0.6357 - val_accuracy: 0.8010
Epoch 5/5
3/3 [==============================] - 2s 112ms/step - loss: 0.6005 - accuracy: 0.8118
++++++++++++++++++++++++++++++++++++++++++++Training 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 24ms/step - loss: 0.4489 - accuracy: 0.8735
++++++++++++++++++++++++++++++++++++++++++++Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
================saved total model================
================del network================
================loaded model from file================
++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:开始++++++++++++++++++++++++++++++++++++++++++++
2/2 [==============================] - 0s 21ms/step - loss: 0.4505 - accuracy: 0.8729
++++++++++++++++++++++++++++++++++++++++++++从磁盘加载整个model后--->Evluation 阶段:结束++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:开始++++++++++++++++++++++++++++++++++++++++++++
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
tf.Tensor([9 0 9 ... 5 1 9], shape=(5000,), dtype=int64)
++++++++++++++++++++++++++++++++++++++++++++加载weights后--->应用阶段:结束++++++++++++++++++++++++++++++++++++++++++++
Process finished with exit code 0