- VisionPro实战之传感器识别
视觉王小
VisionPro实战visionpro机器视觉c#
目录1.案例要求2.实现思路1.先进行图片格式转换,不然可能格式不匹配2.进行模板匹配,仔细观察之后发现可以从左侧凹陷的地方入手,再进行定位3.找出四条线段4.进行距离的测量5.编写脚本或者使用CogCreateGraphicLabelTool工具输出数据3.具体操作1.我们先创建一个CogImageConvertTool工具,进行图片转码操作。2.创建一个模板匹配工具CogPMAlignTool
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- OpenCV多分辨率模板匹配与容错优化实战指南
追寻向上
opencv人工智能计算机视觉
第一章:问题背景与挑战1.1传统模板匹配的局限性模板匹配(TemplateMatching)是计算机视觉中基础且广泛使用的技术,其核心思想是通过滑动窗口在目标图像中寻找与模板最相似的位置。然而,传统方法(如OpenCV的cv2.matchTemplate)在实际应用中存在以下问题:尺寸敏感性当目标的实际尺寸与模板不一致时,匹配结果会严重偏离。例如,在工业检测中,摄像头与物体的距离变化会导致目标缩放
- 必看!C# 与 HALCON 构建基于轮廓模板匹配实战宝典
AI_DL_CODE
机器视觉c#人工智能机器视觉HALCON模板匹配特征点匹配
摘要:本文专注于利用C#与HALCON实现基于轮廓的模板匹配技术。从环境搭建,即HALCON安装、C#项目创建及库引用配置,到核心步骤如初始化HALCON环境、读取图像、提取轮廓、创建模板、执行匹配及显示结果等,结合详尽代码示例进行阐述。还深入探讨在实际应用中的优化策略,包括图像预处理、参数精细调整、多模板匹配及实时匹配实现等。旨在助力读者全方位掌握技术,为机器视觉相关项目开发提供有力支撑,高效解
- 【春招笔试真题】饿了么2025.03.07-开发岗真题
春秋招笔试突围
最新互联网春秋招试题合集java算法网络
饿了么2025.03.07-开发岗题目1️⃣:统计01串中0和1的个数,通过计算可能的交换方式确定不同字符串数量2️⃣:使用模板匹配技术识别验证码图片中的"#"符号分布模式3️⃣:构建字典树(Trie)优化异或查询,实现高效的数字黑板游戏整体难度这套题目整体难度适中,由简到难逐步递进:第一题是基础的计数问题,需要理解交换操作的特性第二题是模式识别问题,需要实现模板匹配第三题是高级数据结构应用,需要
- OpenCV进阶篇
随笔写
OpenCVopencv计算机视觉图像处理
sssOpenCV进阶篇第10章模板匹配模板匹配是一种最原始、最基本的识别方法,可以在原始图像中寻找特定图像的位置。模板匹配经常应用于简单的图像查找场景中,例如,在集体合照中找到某个人的位置。本章将介绍如何利用OpenCV实现模板匹配。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8Qunwp3k-1639056667651)(OpenCV进阶篇.assets/im
- 视觉定位 完整软件:C# + Halcon,流程可配置、多品牌相机支持、模板匹配与实时播放,【教程】使用C# + Halcon实现可配置的视觉定位软件,支持多品牌相机采图和模板匹配,实时播放输出结果,
QhVRjZTKJ
数码相机c#开发语言
视觉定位完整软件。开发语言:C#+Halcon。1.流程可配置;2.海康威视相机采图,可定制成其它品牌相机(Basler,映美精等);3.模板匹配;4.定位指针,拟合圆,拟合矩形;跟随模板匹配跑;5.实时播放;输出结果对列;6.代码结构使用共同接口,方便工具扩展。ID:8499727635025643L_买卖不成仁义在【标题】视觉定位软件源码解析与定制化服务【摘要】本文基于C#+Halcon开发语
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- haclon模板匹配
CallZhang210
haclon视觉检测
*打开窗口dev_open_window(0,0,512,512,'black',WindowHandle)*显示图像(用于创建模板的图像)read_image(Image,'D:/训练照片/4.png')dev_display(Image)*在图像上手动绘制ROI,即选择绘制的模板区域draw_rectangle1(WindowHandle,Row1,Column1,Row2,Column2)*
- OpenCV-Python实战(4)——OpenCV常见图像处理技术_opencv图像处理实战简答
2401_84281648
程序员opencvpython图像处理
OpenCV-Python实战(4)——OpenCV常见图像处理技术0.前言1.拆分与合并通道2.图像的几何变换2.1缩放图像2.2平移图像2.3旋转图像2.4图像的仿射变换2.5图像的透视变换2.6裁剪图像3.图像滤波如何自学黑客&网络安全黑客零基础入门学习路线&规划初级黑客1、网络安全理论知识(2天)①了解行业相关背景,前景,确定发展方向。②学习网络安全相关法律法规。③网络安全运营的概念。④等
- JavaCV进阶opencv图像处理:扫描并识别视频中的二维码
eguid_1
#JavaCV进阶之opencvJavaCV图像处理合集扫描视频二维码opencv识别二维码javacv检测二维码java扫描检测二维码识别二维码
人脸检测识别javacv进阶opencv图像检测/识别系列目录人脸检测识别JavaCV进阶opencv图像处理:摄像头图像人脸检测JavaCV进阶opencv图像处理:ffmpeg视频图像画面人脸检测JavaCV进阶opencv图像处理:批量人脸图像分类训练JavaCV进阶opencv图像处理:摄像头图像人脸识别二维码识别二维码识别JavaCV进阶opencv图像处理:扫描并识别摄像头中的二维码
- opencv图像处理框架
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.课程简介与环境配置二.图像基本操作(1)计算机眼中的视觉1)计算机眼中图像是由一块块组成,每一块又由很多很多个像素点组成,一个像素点的值是在0到255之间,值越大就越亮。2)RGB表示彩色图像的三个颜色通道(红绿蓝),一张彩色图像由很多个三通道的像素点组成,每个像素点在每个通道上的值都可在矩阵上表示出来,矩阵大小就是图像的长与宽(w与h表示)。3)用opencv做简单的图像操作图像读取先导入c
- (04)python-opencv图像处理——图像阈值、平滑图像、形态转换、图像梯度
欲游山河十万里
#opencv-python#深度学习#人工智能pythonopencv图像处理
目录前言一、图像阈值1.1简单的阈值法1.2自适应阈值二、平滑图像2.1二维卷积(图像滤波)2.2图像模糊2.2.1均值模糊2.2.2高斯模糊2.2.3中值滤波2.2.4双边滤波三、形态转换1、腐蚀2、膨胀3、开运算4、闭运算四、图像梯度Sobel和Scharr微分参考文前言在本博文中,进行图像阈值、平滑图像、形态转换、图像梯度的学习以及介绍。一、图像阈值在本部分中,你会学到简单阈值法,自适应阈值
- 程序代码篇---项目目录结构&HSV掩膜&Opencv图像处理
Ronin-Lotus
程序代码篇学习PythonopencvHSV图像处理项目目录
文章目录前言第一部分:项目目录结构第二部分:HSV提取HSV色调(Hue)含义取值范围饱和度(Saturation)含义取值范围亮度(Value)含义取值范围第三部分:Opencv图像处理1.读取和显示图像2.转换颜色空间3.边缘检测4.形态变换5.图像阈值6.图像平滑7.图像轮廓总结前言以上就是今天要讲的内容,本文简单介绍了项目目录结构、HSV掩膜、Opencv图像处理第一部分:项目目录结构一个
- 第五章 Opencv图像处理框架实战 5-7图像金字塔与轮廓检测
老张谋
AI--深度学习opencv图像处理人工智能
1、图像金字塔定义图像金字塔¶高斯金字塔拉普拉斯金字塔高斯金字塔:向下采样方法(缩小)高斯金字塔:向上采样方法(放大)
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
半截诗
Pythonpython机器学习图像处理opencv计算机视觉视觉检测实战项目
文章目录PythonOpenCV入门与实战详解前言第一章:OpenCV基础操作1.1OpenCV简介1.1.1OpenCV的优势1.2安装OpenCV1.3OpenCV中的图像读取与显示1.3.1读取图像1.3.2显示图像1.3.3保存图像1.3.4示例:图像读取、显示与保存1.4图像的基本属性1.4.1图像通道第二章:OpenCV图像处理2.1图像的几何变换2.1.1缩放图像2.1.2图像旋转2
- C# OpenCV机器视觉:利用CNN实现快速模板匹配
pchmi
C#OpenCV机器视觉c#opencvcnn人工智能机器视觉OpenCvSharp
在一个阳光灿烂的周末,阿强正瘫在沙发上,百无聊赖地换着电视频道。突然,一则新闻吸引了他的注意:某博物馆里一幅珍贵的古画离奇失踪,警方怀疑是被一伙狡猾的盗贼偷走了,现场只留下一些模糊不清的监控画面,根本无法确定盗贼的行踪。阿强看着电视里那一团乱麻的线索,眼睛突然一亮,心中涌起一股热血:“要是我能帮警方找到盗贼,那可就太酷了!说不定还能得到博物馆的巨额悬赏,从此走上人生巅峰呢!”说干就干,阿强立马冲进
- 基于OpenCV的答题卡识别系统(附全部源码)
Dong__ZW
opencv人工智能计算机视觉
本项目基于Python和OpenCV图像处理库,在Windows平台下开发了一个答题卡识别系统。系统运用精巧的计算机视觉算法,实现了批量识别答题卡并将信息导出至Excel表格的功能。这一解决方案使得答题卡的判卷过程变得轻便、高效且准确。首先,我们以Python语言作为开发基础,结合OpenCV图像处理库,为系统提供了强大的图像处理和分析能力。这使得我们能够在图像中准确地定位答题卡,检测填涂区域,以
- 基于SIFT特征提取和模板匹配的车标识别算法MATLAB仿真(含MATLAB代码)
爱学习的通信人
图像处理毕业设计信号处理算法matlab开发语言
摘要本文介绍了一种基于尺度不变特征变换(SIFT)特征提取和模板匹配的车标识别方法,并通过MATLAB进行仿真。该方法利用SIFT特征的尺度和旋转不变性,提高车标识别的准确性和鲁棒性,适用于各种尺寸和方向的车标图像。仿真结果展示了该方法在实际应用中的有效性。关键词:车标识别,SIFT特征提取,模板匹配,MATLAB仿真1.引言车标识别在车辆检测、智能交通系统和安全监控中具有重要应用。准确识别车辆品
- 使用Python和Playwright破解滑动验证码
asfdsgdf
python开发语言
滑动验证码是一种常见的验证码形式,通过拖动滑块将缺失的拼图块对准原图中的空缺位置来验证用户操作。本文将介绍如何使用Python中的OpenCV进行模板匹配,并结合Playwright实现自动化破解滑动验证码的过程。所需技术OpenCV模板匹配:用于识别滑块在背景图中的正确位置。Python:主要编程语言。Playwright:用于浏览器自动化,模拟用户操作。破解过程概述获取验证码图像:下载背景图和
- OpenCV图像处理技术(Python)——入门
森屿_
opencv
©FuXianjun.AllRightsReserved.OpenCV入门图像作为人类感知世界的视觉基础,是人类获取信息、表达信息的重要手段,OpenCV作为一个开源的计算机视觉库,它包括几百个易用的图像成像和视觉函数,既可以用于学术研究,也可用于工业邻域,它于1999年由因特尔的GaryBradski启动,OpenCV库主要由C和C++语言编写,它可以在多个操作系统上运行。1.1图像处理基本操作
- opencv学习:图像旋转的两种方法,旋转后的图片进行模板匹配代码实现
夜清寒风
学习opencv机器学习人工智能计算机视觉
图像旋转在图像处理中,rotate和rot90是两种常见的图像旋转方法,它们在功能和使用上有一些区别。下面我将分别介绍这两种方法,并解释它们的主要区别rot90方法rot90方法是NumPy提供的一种数组旋转函数,它主要用于对二维数组(如图像)进行90度的旋转。这个方法比较简单,只支持90度的倍数旋转,不支持任意角度旋转。使用NumPy进行旋转使用NumPy的rot90函数对模板图像进行旋转操作。
- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- python图像匹配_opencvpython中的图像匹配
weixin_39585675
python图像匹配
我一直在做一个项目,用opencvpython识别相机中显示的标志。我已经尝试过使用surf、颜色直方图匹配和模板匹配。但在这3个问题中,它并不总是返回正确的答案。我现在想要的是,解决我这个问题的最好办法是什么。模板图像示例:以下是摄像头中显示的标志示例。如果这是我想要识别的图像,该怎么用?在更新matchTemplate中的代码flags=["Cambodia.jpg","Laos.jpg","
- opencv 之 实战项目 识别银行卡上的数字
SEVEN-YEARS
opencv计算机视觉人工智能
OpenCV之实战项目:识别银行卡上的数字引言在日常生活中,银行卡的识别是一个常见的需求,特别是在金融领域。本实战项目旨在使用OpenCV库来识别银行卡上的数字。我们将通过模板匹配的方法,结合图像处理技术,来准确识别银行卡上的数字序列。项目准备本项目需要安装Python和OpenCV库。确保已经安装了必要的库,并准备好银行卡图像和数字模板图像。实验素材定义函数importcv2defsort_co
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- 深度学习驱动下的字符识别:挑战与创新
逼子歌
神经网络深度学习字符识别卷积神经网络图像处理特征提取
一、引言1.1研究背景深度学习在字符识别领域具有至关重要的地位。随着信息技术的飞速发展,对字符识别的准确性和效率要求越来越高。字符识别作为计算机视觉领域的一个重要研究方向,其主要目的是将各种形式的字符转换成计算机可识别的文本信息。近年来,深度学习技术在字符识别领域取得了显著的进展。国内研究者主要使用基于模板匹配的方法、基于统计模型的方法、基于神经网络的方法等各种方法进行字符识别研究。目前,国内各大
- opencv轮廓近似,模板匹配
富士达幸运星
opencv人工智能计算机视觉
在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线段组成的多边形或其他简单形状,以减少轮廓的复杂度和数据量。OpenCV提供了cv2.approxPolyDP()
- Halcon基于灰度值的模板匹配
看海听风心情棒
计算机视觉人工智能
Halcon基于灰度值的模板匹配基于灰度值的模板匹配是最经典的模板匹配算法,也是最早提出来的模板匹配算法。这种算法的根本思想是,计算模板图像与检测图像之间的像素灰度差值的绝对值总和(SAD方法)或者平方差总和(SSD方法)。其原理是:首先选择一块ROI(感兴趣区域)作为模板图像,生成基于灰度值的模板;然后将检测图像与模板图像进行粗匹配,在检测图像与模板图像中任选一点,采取隔点拽索的方式计算二者灰度
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/