本文系转载,写得很详细,故记录于此,方便查阅(实际上只看方法1就够了)
链接:https://www.zhihu.com/question/311095447/answer/589307812
先列出4种可行参考方法,最后列出一种方法的代码实现。
首先假设如下的模型:
class Char3SeqModel(nn.Module):
def __init__(self, char_sz, n_fac, n_h):
super().__init__()
self.em = nn.Embedding(char_sz, n_fac)
self.fc1 = nn.Linear(n_fac, n_h)
self.fc2 = nn.Linear(n_h, n_h)
self.fc3 = nn.Linear(n_h, char_sz)
def forward(self, ch1, ch2, ch3):
# do something
out = #....
return out
model = Char3SeqModel(10000, 50, 25)
假设需要冻结fc1
,有如下几个方法
方法1:
# 冻结
model.fc1.weight.requires_grad = False
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.1)
#
# compute loss
# loss.backward()
# optmizer.step()
# 解冻
model.fc1.weight.requires_grad = True
optimizer.add_param_group({'params': model.fc1.parameters()})
方法2:
# 冻结
optimizer = optim.Adam([{'params':[ param for name, param in model.named_parameters() if 'fc1' not in name]}], lr=0.1)
# compute loss
# loss.backward()
# optimizer.step()
# 解冻
optimizer.add_param_group({'params': model.fc1.parameters()})
方法3:
大体思路:将原来的layer的weight缓存下来,每次反向传播之后,再将原来的weight赋值给相应的layer。
fc1_old_weights = Variable(model.fc1.weight.data.clone())
# compute loss
# loss.backward()
# optimizer.step()
model.fc1.weight.data = fc1_old_weights.data
方法4:
大体思路:在每次进行反向传播更新权重之前将相应layer的gradient手动置为0。缺点也很明显,会浪费计算资源。
# compute loss
# loss.backward()
# set fc1 gradients to 0
# optimizer.step()
终极方法代码实现:
from collections.abc import Iterable
def set_freeze_by_names(model, layer_names, freeze=True):
if not isinstance(layer_names, Iterable):
layer_names = [layer_names]
for name, child in model.named_children():
if name not in layer_names:
continue
for param in child.parameters():
param.requires_grad = not freeze
def freeze_by_names(model, layer_names):
set_freeze_by_names(model, layer_names, True)
def unfreeze_by_names(model, layer_names):
set_freeze_by_names(model, layer_names, False)
def set_freeze_by_idxs(model, idxs, freeze=True):
if not isinstance(idxs, Iterable):
idxs = [idxs]
num_child = len(list(model.children()))
idxs = tuple(map(lambda idx: num_child + idx if idx < 0 else idx, idxs))
for idx, child in enumerate(model.children()):
if idx not in idxs:
continue
for param in child.parameters():
param.requires_grad = not freeze
def freeze_by_idxs(model, idxs):
set_freeze_by_idxs(model, idxs, True)
def unfreeze_by_idxs(model, idxs):
set_freeze_by_idxs(model, idxs, False)
# 冻结第一层
freeze_by_idxs(model, 0)
# 冻结第一、二层
freeze_by_idxs(model, [0, 1])
#冻结倒数第一层
freeze_by_idxs(model, -1)
# 解冻第一层
unfreeze_by_idxs(model, 0)
# 解冻倒数第一层
unfreeze_by_idxs(model, -1)
# 冻结 em层
freeze_by_names(model, 'em')
# 冻结 fc1, fc3层
freeze_by_names(model, ('fc1', 'fc3'))
# 解冻em, fc1, fc3层
unfreeze_by_names(model, ('em', 'fc1', 'fc3'))