- LightGBM+NRBO-Transformer-BiLSTM多变量回归预测 Matlab代码
前程算法屋
私信获取源码transformer回归matlab
LightGBM+NRBO-Transformer-BiLSTM多变量回归预测Matlab代码一、引言1.1、研究背景与意义在现代数据科学领域,多变量回归预测问题一直是一个研究热点。随着互联网和物联网技术的迅速发展,数据量呈指数级增长,如何从这些海量数据中提取有用的信息,并进行准确预测,成为了一个亟待解决的问题。多变量回归预测模型在金融风险管理、气象预报、医疗健康等多个领域具有广泛的应用。例如,在
- KTransformers:告别天价显卡!国产框架让单卡24G显存跑DeepSeek-R1 671B大模型:推理速度飙升28倍
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花“还在为千亿模型租天价显卡?清华团队用CPU/GPU协同计算,让4090跑起671B参数全量模型!”大家好,我是蚝油菜花。如果你也经历过——看着API调用账单瑟瑟发抖,微调一次模型吃掉半月算力预算️盯着OOM报错抓狂,为了
- 全面采用亚马逊云科技:利用亚马逊云转变生产运营
AI航海家
AWS
全面采用亚马逊云科技:利用亚马逊云转变生产运营关键字:[AmazonWebServicesre:Invent2024,亚马逊云科技,生成式AI,Bedrock,CloudMigrationJourney,GenerativeAiSolutions,DataStrategyVision,SingleCloudSimplification,ProductionOperationsTransformat
- 【Stable Diffusion部署至Google Colab】
星星点点洲
stablediffusion
GoogleColab中快速搭建带GPU加速的StableDiffusionWebUIfromgoogle.colabimportdrivedrive.mount('/content/drive')!mkdir/content/drive/MyDrive/sd-webui-files!pipinstalltorch==1.13.1+cu116torchvision==0.14.1+cu116tor
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- OpenCV及基本用法
m0_74823683
opencv人工智能计算机视觉
一.OpenCV介绍1.OpenCV的全称是OpenSourceComputerVisionLibrary,是一个开放源代码的计算机视觉库。OpenCV是最初由英特尔公司发起并开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国WillowGarage为OpenCV提供主要的支持。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,目前在工业界以及科研领域广泛采用。
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- MD5加密
计蒙不吃鱼
Android开发相关MD5MD5加密
简介:MD5的全称是Message-DigestAlgorithm5(信息-摘要算法),它是一种单向加密算法,可以将输入的信息加密转换为128位固定长度的散列值,用于检验数据传输过程中的完整性。在90年代初由MITLaboratoryforComputerScience和RSADataSecurityInc的RonaldL.Rivest开发出来,经MD2、MD3和MD4发展而来。出现的两种观点:1
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- 深度解析DeepSeek大模型的技术架构与创新点
程序员
大家好,我是一名DeepSeek大模型研究者,今天我想和大家分享一下DeepSeek大模型的核心技术架构和创新特点。作为国内领先的开源大模型,DeepSeek在架构设计和技术创新上都有其独特之处。让我们一起来揭开它的神秘面纱!一、基础架构概览DeepSeek的核心架构建立在Transformer的基础上,但进行了多项创新优化。我第一次接触DeepSeek时,就被它在模型结构上的精巧设计所吸引。1.
- 拉普拉斯逆变换 (Inverse Laplace Transform)
正是读书时
知识点信号处理信息与通信
拉普拉斯逆变换(InverseLaplaceTransform)概述拉普拉斯逆变换是拉普拉斯变换的逆过程,用于将频域中的函数转换回时域。拉普拉斯变换在信号处理、控制理论和系统分析中具有广泛的应用,而拉普拉斯逆变换则用于将分析得到的结果转换回时域,以便理解和应用实际的系统行为。定义(以单边s变换举例)设\(F(s)\)是一个复变量\(s\)的函数,且\(F(s)\)是某个时域函数\(f(t)\)的拉
- deepseek+python,离线api,持续对话
守着黎明看日出
python
功能:通过start开启新对话,stop结束对话,exit退出程序,并且可持续对话代码fromtransformersimportAutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfigimporttorch#导入torch模块#配置4-bit量化quantization_config=BitsAndBytesConfig(load_in_4bit
- 清华大学KVCache.AI团队联合趋境科技联合的KTransformers开源项目为什么那么厉害
魔王阿卡纳兹
IT杂谈人工智能科技开源清华DeepSeek趋境科技KTransformers
KTransformers是一个由清华大学KVAV.AI团队开发的开源项目,旨在优化大语言模型(LLM)的推理性能,特别是在有限显存资源下运行大型模型。以下是KTransformers的详细介绍:1.核心特点高性能优化:KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术,显著加速模型推理速度,降低硬件门槛。灵活扩展性:KTransformers是一个以Python为中心的
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- Transformer以及BERT阅读参考博文
mumukehao
文本属性图文本属性图
Transformer以及BERT阅读参考博文Transformer学习:已有博主的讲解特别好了:李沐:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili知乎:Transformer模型详解(图解最完整版)-知乎个人杂想:QKT∗VQK^{T}*VQKT∗V中,QKTQK^TQKT其实可以理解为相似性矩阵S,那么S∗VS*VS∗V其实就相当于相似性矩阵对原始的嵌入加权求和。
- ZCC6507: A Superior Isolated Power Solution Outperforming SN6507
zhichengwei
其他
Inthefieldofisolatedpowerdesign,engineersareconstantlyseekingmoreefficient,flexible,andcost-effectivesolutions.TheZCC6507,ahigh-performancepush-pulltransformerdriver,standsoutwithitsuniquedesignandsig
- yolo数据增强
攀神
YOLOpython开发语言
importosimportcv2importnumpyasnpimportalbumentationsasA#定义数据增强的变换,可以根据需要自定义transform=A.Compose([A.HorizontalFlip(p=0.5),#水平翻转A.RandomBrightnessContrast(p=0.5),#随机亮度和对比度A.Rotate(limit=15,p=0.5),#随机旋转A.
- 23. AI-大语言模型
真上帝的左手
23.AI人工智能语言模型自然语言处理
文章目录前言一、LLM1.简介2.工作原理和结构3.应用场景4.最新研究进展5.比较二、Transformer架构1.简介2.基本原理和结构3.应用场景4.最新进展三、开源1.开源概念2.开源模式3.模型权重四、再谈DeepSeek前言AI一、LLMLLM(LargeLanguageModel,大语言模型)1.简介 LLM(LargeLanguageModel,大语言模型)是指使用大量文本
- 高德地图坐标系 转换 EPSG:4326
鎈卟誃筅甡
Openlayersarcgis
若要将高德地图的经纬度(基于GCJ-02坐标系)转换为EPSG:4326(WGS84)坐标系,你需要使用一个能够执行这种坐标转换的库或工具。由于高德地图使用的是GCJ-02坐标系,而EPSG:4326是WGS84坐标系,因此直接转换需要特定的算法。OpenLayers本身并不直接提供从GCJ-02到WGS84的转换功能,但你可以使用其他库,如coordtransform,或者自己实现转换算法。以下
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- css优化-will-change: transform
是谁眉眼
css前端
will-change:transformtransform:matrix3d(0,0,0);will-change的作用will-change的作用就是告诉浏览器某个元素将要发生的变化,从而使浏览器在渲染过程中提前分配和优化相应的资源。会使得动画变得流畅一些,只在需要优化的元素上使用will-change,避免对所有元素都进行指定例如,当我们设置了will-change:transform时,浏
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 用java实现word(docx)转换为pdf格式文档(简单版)
xiaoxiaobaozhu
javawordpdf
导入依赖com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3代码//word文档替换成pdf文档privatestaticvoidreplaceWordToPdf(StringwordPath,StringpdfPath){FileinputWord=newFil
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 简单枚举 / 枚举排列
Zhouqi_Hua
Henry学C++Henry的ACM学习笔记蓝桥杯c++算法深度优先力扣
本文参考《算法竞赛入门经典》第七章《暴力枚举法》,提出的是暴力“列举”出所有可能性并一一试验的方法。目录1简单枚举2枚举排列2.1生成1~n的排列2.2生成可重集的排列2.3解答树2.4下一个排列一、简单枚举简单枚举就是枚举一些例如整数、子串的简单类型。但是如果拿到题目直接上手枚举,可能会导致枚举次数过多(甚至引起TLE)。因此在枚举前先要进行分析。比如例题除法(Division,Uva725):
- 海思Hi3516CV610 -----芯片说明
菩提树下的凡夫
嵌入式Linux系统开发c++c语言
Hi3516CV610这颗超高清智慧视觉SoC芯片是由海思技术有限公司推出的,其首发量产的时间是在2024年4。标志着海思正式回归安防市场,并在IPCSoC市场中展开竞争。关键特性●4K@20,6M@30分辨率●双目实时接入,支撑枪球一体机等双目机型●1T算力NPU,Transformer特性加速,大模型端侧部署●SVAC3.0编码标准,压缩率提升20%●智能编码2.0,像素升级,存储不加量,4M
- 集成学习算法简述
終不似少年遊*
人工智能学习进阶集成学习算法机器学习人工智能提高效率
目录1.必要的导入2.Bagging集成3.基于matplotlib写一个函数对决策边界做可视化4.总结图中结论5.扩展说明1.必要的导入#Tosupportbothpython2andpython3from__future__importdivision,print_function,unicode_literals#Commonimportsimportnumpyasnpimportos#to
- COP 3402: Lexical Analyzer
后端
UniversityofCentralFloridaSchoolofElectricalEngineering&ComputerScienceCOP3402:SystemSoftwareSpring2025Homework#2(LexicalAnalyzer)DueSunday,February16th,2025by11:59p.m.Goal:Inthisassignmentyourteamhav
- DexVLA:通用机器人控制中具有插件式扩散专家的视觉语言模型
硅谷秋水
大模型智能体计算机视觉语言模型计算机视觉深度学习机器学习人工智能
25年2月来自美的集团和华东师范的论文“DexVLA:Vision-LanguageModelwithPlug-InDiffusionExpertforGeneralRobotControl”。让机器人能够在不同的环境中执行不同的任务是机器人学习的核心挑战。虽然视觉-语言-动作(VLA)模型已显示出可泛化机器人技能的前景,但要充分发挥其潜力,需要解决动作表示和有效训练方面的限制。当前的VLA模型通
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$