激活函数介绍

ReLU对比Sigmoid主要变化:
1.单侧抑制
2.相对宽阔的兴奋边界
3.稀疏激活性

(1) sigmoid函数(曲线很像“S”型)

公式:

曲线:

也叫 Logistic 函数,用于隐层神经元输出
取值范围为(0,1)
它可以将一个实数映射到(0,1)的区间,可以用来做二分类。(它不像SVM直接给出一个分类的结果,Logistic Regression给出的是这个样本属于正类或者负类的可能性是多少,当然在多分类的系统中给出的是属于不同类别的可能性,进而通过可能性来分类。)
在特征相差比较复杂或是相差不是特别大时效果比较好。

sigmoid缺点:
激活函数计算量大,反向传播求误差梯度时,求导涉及除法
反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练(sigmoid的饱和性)

下面解释为何会出现梯度消失:

反向传播算法中,要对激活函数求导,sigmoid 的导数表达式为:

sigmoid 原函数及导数图形如下:

从上图可以看到,其两侧导数逐渐趋近于0

具有这种性质的称为软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是硬饱和, 即
sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由于在后向传递过程中,sigmoid向下传导的梯度包含了一个 因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,的导数就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象

此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

(2) Tanh函数

公式

激活函数介绍_第1张图片

激活函数介绍_第2张图片

其中sinh(x)数学公式为:
这里写图片描述

其中cosh(x)数学公式为:
这里写图片描述

(3) ReLU

Rectified Linear Unit(ReLU) - 用于隐层神经元输出

公式

曲线

输入信号 <0 时,输出都是0,>0 的情况下,输出等于输入

ReLU 的优点:
发现使用 ReLU 得到的 SGD 的收敛速度会比 sigmoid/tanh 快很多。除此之外,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。

ReLU 的缺点:
随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与sigmoid类似,ReLU的输出均值也大于0,偏移现象和 神经元死亡会共同影响网络的收敛性。

(4) softmax函数

Softmax - 用于多分类神经网络输出

公式

举个例子来看公式的意思:

就是如果某一个 zj 大过其他 z, 那这个映射的分量就逼近于 1,其他就逼近于 0,主要应用就是多分类。

为什么要取指数,第一个原因是要模拟 max 的行为,所以要让大的更大。
第二个原因是需要一个可导的函数。

你可能感兴趣的:(TensorFlow,激活函数)