ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)

用pip 安装建议用国内源,如 pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple

目录

1.conda env 环境创建

2. install pytorch 

3. install fvcore

4. install simplejson

5. gcc版本查看

6. PyAV

7.ffmpeg with PyAV

8. PyYaml , tqdm

9.iopath

10. psutil

11. opencv

12. tensorboard

13. moviepy

14. PyTorchVideo

15. Detectron2

16. FairScale

17. SlowFast

运行Demo测试模型

安装过程中遇到的一些errors

error0 

         error1

error2

error3

error4

error5

error6

error7


1.conda env 环境创建

conda create -n py39 python=3.9

2. install pytorch 

先查看cuda版本 , 再对应pytorch版本

查看系统nvidia驱动版本支持最高cuda版本ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第1张图片

查看当前cuda版本

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第2张图片

根据对应cuda版本安装pytorch torchvision

source activate py39
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第3张图片

3. install fvcore

pip install git+https://github.com/facebookresearch/fvcore

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第4张图片

4. install simplejson

pip install simplejson 

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第5张图片

5. gcc版本查看

gcc -v


ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第6张图片
版本是 7.5.0

6. PyAV

conda install av -c conda-forge

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第7张图片

7.ffmpeg with PyAV

pip install av

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第8张图片

8. PyYaml , tqdm

pip list fvcore

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第9张图片

9.iopath

pip install -U iopath

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第10张图片

10. psutil

pip install psutil

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第11张图片

11. opencv

pip install opencv-python

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第12张图片

12. tensorboard

查看是否安装tensorboard:

conda list tensorboard

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第13张图片
没有安装tensorboard

pip install tensorboard

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第14张图片

13. moviepy

pip install moviepy

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第15张图片

14. PyTorchVideo

pip install pytorchvideo

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第16张图片

15. Detectron2

git clone https://github.com/facebookresearch/detectron2 detectron2_repo

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第17张图片

pip install -e detectron2_repo

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第18张图片

16. FairScale

pip install git+https://github.com/facebookresearch/fairscale

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第19张图片

17. SlowFast

git clone https://github.com/facebookresearch/SlowFast.git


ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第20张图片

cd SlowFast
python setup.py build develop

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第21张图片

运行Demo测试模型

python3 tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50.yaml

安装过程中遇到的一些errors

error0 

not find PIL 

解决办法:将setup.py 中的 PIL 更改为 Pillow 

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第22张图片

error1

from pytorchvideo.layers.distributed import ( # noqa
ImportError: cannot import name 'cat_all_gather' from 'pytorchvideo.layers.distributed' (/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/layers/distributed.py)

解决方式:

方式一:将pytorchvideo/pytorchvideo at main · facebookresearch/pytorchvideo · GitHub文件下内容复制到虚拟环境所对应的文件下,这里是:/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/

方式二:
layers/distributed.py添加如下内容

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""Distributed helpers."""

import torch
import torch.distributed as dist
from torch._C._distributed_c10d import ProcessGroup
from torch.autograd.function import Function

_LOCAL_PROCESS_GROUP = None


def get_world_size() -> int:
    """
    Simple wrapper for correctly getting worldsize in both distributed
    / non-distributed settings
    """
    return (
        torch.distributed.get_world_size()
        if torch.distributed.is_available() and torch.distributed.is_initialized()
        else 1
    )


def cat_all_gather(tensors, local=False):
    """Performs the concatenated all_reduce operation on the provided tensors."""
    if local:
        gather_sz = get_local_size()
    else:
        gather_sz = torch.distributed.get_world_size()
    tensors_gather = [torch.ones_like(tensors) for _ in range(gather_sz)]
    torch.distributed.all_gather(
        tensors_gather,
        tensors,
        async_op=False,
        group=_LOCAL_PROCESS_GROUP if local else None,
    )
    output = torch.cat(tensors_gather, dim=0)
    return output


def init_distributed_training(cfg):
    """
    Initialize variables needed for distributed training.
    """
    if cfg.NUM_GPUS <= 1:
        return
    num_gpus_per_machine = cfg.NUM_GPUS
    num_machines = dist.get_world_size() // num_gpus_per_machine
    for i in range(num_machines):
        ranks_on_i = list(
            range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)
        )
        pg = dist.new_group(ranks_on_i)
        if i == cfg.SHARD_ID:
            global _LOCAL_PROCESS_GROUP
            _LOCAL_PROCESS_GROUP = pg


def get_local_size() -> int:
    """
    Returns:
        The size of the per-machine process group,
        i.e. the number of processes per machine.
    """
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)


def get_local_rank() -> int:
    """
    Returns:
        The rank of the current process within the local (per-machine) process group.
    """
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    assert _LOCAL_PROCESS_GROUP is not None
    return dist.get_rank(group=_LOCAL_PROCESS_GROUP)


def get_local_process_group() -> ProcessGroup:
    assert _LOCAL_PROCESS_GROUP is not None
    return _LOCAL_PROCESS_GROUP


class GroupGather(Function):
    """
    GroupGather performs all gather on each of the local process/ GPU groups.
    """

    @staticmethod
    def forward(ctx, input, num_sync_devices, num_groups):
        """
        Perform forwarding, gathering the stats across different process/ GPU
        group.
        """
        ctx.num_sync_devices = num_sync_devices
        ctx.num_groups = num_groups

        input_list = [torch.zeros_like(input) for k in range(get_local_size())]
        dist.all_gather(
            input_list, input, async_op=False, group=get_local_process_group()
        )

        inputs = torch.stack(input_list, dim=0)
        if num_groups > 1:
            rank = get_local_rank()
            group_idx = rank // num_sync_devices
            inputs = inputs[
                group_idx * num_sync_devices : (group_idx + 1) * num_sync_devices
            ]
        inputs = torch.sum(inputs, dim=0)
        return inputs

    @staticmethod
    def backward(ctx, grad_output):
        """
        Perform backwarding, gathering the gradients across different process/ GPU
        group.
        """
        grad_output_list = [
            torch.zeros_like(grad_output) for k in range(get_local_size())
        ]
        dist.all_gather(
            grad_output_list,
            grad_output,
            async_op=False,
            group=get_local_process_group(),
        )

        grads = torch.stack(grad_output_list, dim=0)
        if ctx.num_groups > 1:
            rank = get_local_rank()
            group_idx = rank // ctx.num_sync_devices
            grads = grads[
                group_idx
                * ctx.num_sync_devices : (group_idx + 1)
                * ctx.num_sync_devices
            ]
        grads = torch.sum(grads, dim=0)
        return grads, None, None

error2

from scipy.ndimage import gaussian_filter

ModuleNotFoundError: No module named 'scipy'

解决方法:

pip install scipy

error3

from av._core import time_base, library_versions

ImportError: /home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/av/../../.././libgnutls.so.30: symbol mpn_copyi version HOGWEED_6 not defined in file libhogweed.so.6 with link time reference
 

解决方法:

先移处av包
ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第23张图片

使用 pip安装


pip install av


ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第24张图片

error4

File "/media/cxgk/Linux/work/SlowFast/slowfast/models/losses.py", line 11, in
from pytorchvideo.losses.soft_target_cross_entropy import (
ModuleNotFoundError: No module named 'pytorchvideo.losses'

解决办法:

打开"/home/cxgk/anaconda3/envs/sf/lib/python3.9/site-packages/pytorchvideo/losses",在文件夹下新建 soft_target_cross_entropy.py, 并打开添加如下代码:

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorchvideo.layers.utils import set_attributes
from pytorchvideo.transforms.functional import convert_to_one_hot


class SoftTargetCrossEntropyLoss(nn.Module):
    """
    Adapted from Classy Vision: ./classy_vision/losses/soft_target_cross_entropy_loss.py.
    This allows the targets for the cross entropy loss to be multi-label.
    """

    def __init__(
        self,
        ignore_index: int = -100,
        reduction: str = "mean",
        normalize_targets: bool = True,
    ) -> None:
        """
        Args:
            ignore_index (int): sample should be ignored for loss if the class is this value.
            reduction (str): specifies reduction to apply to the output.
            normalize_targets (bool): whether the targets should be normalized to a sum of 1
                based on the total count of positive targets for a given sample.
        """
        super().__init__()
        set_attributes(self, locals())
        assert isinstance(self.normalize_targets, bool)
        if self.reduction not in ["mean", "none"]:
            raise NotImplementedError(
                'reduction type "{}" not implemented'.format(self.reduction)
            )
        self.eps = torch.finfo(torch.float32).eps

    def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        """
        Args:
            input (torch.Tensor): the shape of the tensor is N x C, where N is the number of
                samples and C is the number of classes. The tensor is raw input without
                softmax/sigmoid.
            target (torch.Tensor): the shape of the tensor is N x C or N. If the shape is N, we
                will convert the target to one hot vectors.
        """
        # Check if targets are inputted as class integers
        if target.ndim == 1:
            assert (
                input.shape[0] == target.shape[0]
            ), "SoftTargetCrossEntropyLoss requires input and target to have same batch size!"
            target = convert_to_one_hot(target.view(-1, 1), input.shape[1])

        assert input.shape == target.shape, (
            "SoftTargetCrossEntropyLoss requires input and target to be same "
            f"shape: {input.shape} != {target.shape}"
        )

        # Samples where the targets are ignore_index do not contribute to the loss
        N, C = target.shape
        valid_mask = torch.ones((N, 1), dtype=torch.float).to(input.device)
        if 0 <= self.ignore_index <= C - 1:
            drop_idx = target[:, self.ignore_idx] > 0
            valid_mask[drop_idx] = 0

        valid_targets = target.float() * valid_mask
        if self.normalize_targets:
            valid_targets /= self.eps + valid_targets.sum(dim=1, keepdim=True)
        per_sample_per_target_loss = -valid_targets * F.log_softmax(input, -1)

        per_sample_loss = torch.sum(per_sample_per_target_loss, -1)
        # Perform reduction
        if self.reduction == "mean":
            # Normalize based on the number of samples with > 0 non-ignored targets
            loss = per_sample_loss.sum() / torch.sum(
                (torch.sum(valid_mask, -1) > 0)
            ).clamp(min=1)
        elif self.reduction == "none":
            loss = per_sample_loss

        return 

error5

from sklearn.metrics import confusion_matrix

ModuleNotFoundError: No module named 'sklearn'

解决办法:

pip install scikit-learn

error6

raise KeyError("Non-existent config key: {}".format(full_key))

KeyError: 'Non-existent config key: TENSORBOARD.MODEL_VIS.TOPK'

解决方法:

注释掉如下三行:

TENSORBOARD

MODEL_VIS

TOPK

ubuntu18.04 下slowfast网络环境安装及模型测试( python3.9)_第25张图片

error7

RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 3.94 GiB total capacity; 2.83 GiB already allocated; 25.44 MiB free; 2.84 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

解决方法:

将yaml里的帧数改小:

DATA:
NUM_FRAMES: 16

Reference:

https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo

你可能感兴趣的:(行为识别)