- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 02 使用 LSTM 进行时间序列预测
柒 魅。
时间序列预测lstm人工智能rnn
深度学习入门:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。我们将从基础知识讲起,提供代码示例,并解释每一步的技术细节。希望通过本文,大家能对LSTM有一个初步的了解,并能够在自己的项目中应用。1.什么是LSTM?LSTM(长短期记忆网络)是一种特殊的递归神经网络(RNN
- 【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
Better Rose
深度学习深度学习决策树分类
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 图像分割——基于pytorch的牙齿分割
苏俗
计算机视觉实战pytorch人工智能python
作为视觉基础任务的图像分割是大多数深度学习入门者的进一步学习,本文将用牙齿分割作为数据集,分享一下图像分割的训练内容。一、引入库importosimporttorchimporttorch.nnasnnfromPILimportImageimporttorch.optimasoptimimporttorch.nn.functionalasFfromtorchvisionimporttransfor
- 图像分类——基于pytorch的农作物病虫害检测
苏俗
计算机视觉实战分类pytorch数据挖掘
作为视觉基础任务的图像分类是大多数深度学习入门者的基础,本文将用包含33类的农作物病虫害数据集作为数据集,来过一遍图像分类任务的基本步骤。一、引入库importosimporttorchimportnumpyasnpfromPILimportImageimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportutilsfromco
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 深度学习入门--参数的优化算法
我只钓小鱼
深度学习
1.梯度下降法(GradientDescent)梯度下降法的计算过程就是沿梯度下降的方向求解极小值,也可以沿梯度上升方向求解最大值。假设模型参数为θ\thetaθ,损失函数为J(θ)J(\theta)J(θ),损失函数关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为α\alphaα,则使用梯度下降法更新参数为:梯度下降法目前
- 第五届脑电深度学习入门班(训练营:2023.9.12~9.20)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习入门笔记(九)自编码器
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
自编码器是一个无监督的应用,它使用反向传播来更新参数,它最终的目标是让输出等于输入。数学上的表达为,f(x)=x,f为自编码器,x为输入数据。自编码器会先将输入数据压缩到一个较低维度的特征,然后利用这个较低维度的特征重现输入的数据,重现后的数据就是自编码器的输出。所以,从本质上来说,自编码器就是一个压缩算法。自编码器由3个部分组成:编码器(Encoder):用于数据压缩。压缩特征向量(Compre
- 深度学习入门笔记(八)可以不断思考的模型:RNN与LSTM
zhanghui_cuc
深度学习笔记深度学习rnn笔记
8.1循环神经网络RNN之前学到的CNN和全连接,模型的输入数据之间是没有关联的,比如图像分类,每次输入的图片与图片之间就没有任何关系,上一张图片的内容不会影响到下一张图片的结果。但在自然语言处理领域,这就成了一个短板。RNN因此出现,它是一类用于处理序列数据的神经网络。其基本单元结构如下自底向上的三个蓝色的节点分别是输入层、隐藏层和输出层。U和V分别是连接两个层的权重矩阵。如果不考虑右边的棕色环
- 第四届脑电深度学习入门班(训练营:2023.7.4~7.12)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习与计算机视觉:实例入门-第六章
javastart
图象处理深度学习tensorflowopencv2
给深度学习入门者的Python快速教程-番外篇之Python-OpenCV《深度学习与计算机视觉》全书网址:https://frombeijingwithlove.github.io…本篇原网址:https://zhuanlan.zhihu.com/p/24425116本篇是前面两篇教程:给深度学习入门者的Python快速教程-基础篇给深度学习入门者的Python快速教程-numpy和Matplo
- 《深度学习入门:基于python的理论与实现》读书笔记
莫里衰
求梯度的函数:f是需要求梯度的函数,x是求梯度的点image.pngdefnumerical_gradient(f,x):h=1e-4#0.0001grad=np.zeros_like(x)#生成和x形状相同的数组foridxinrange(x.size):tmp_val=x[idx]#f(x+h)的计算x[idx]=tmp_val+hfxh1=f(x)#f(x-h)的计算x[idx]=tmp_v
- 深度学习入门笔记(五)前馈网络与反向传播
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
接着上一节,本节讲解模型自我学习的数学计算过程究竟是怎么样的。5.1前馈网络一个最简单的前馈神经网络如图所示,对于每一个隐藏层,输入对应前一层每一个节点权重乘以节点输出值,输出则是经过激活函数(例如sigmoid函数)计算后的值。在这样的网络中,输入的数据x经过网络的各个节点之后,即可计算出最终的模型结果。这样就完成了一个最基本的前馈网络从输入到输出的计算过程。5.2反向传播在实际工作中这部分的内
- 深度学习入门(鱼书)
weixin_42963026
深度学习人工智能
学习笔记第3章神经网络3.1从感知机到神经网络3.1.1神经网络的例子图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去1后的数量)来表示网络的名称。3.1.2复习感知机3.1.3激活函数登场刚才登场的h(x)函数会将输
- 深度学习入门笔记(1)——什么是深度学习?
ZRX_GIS
深度学习深度学习数据挖掘机器学习神经网络pytorch
深度学习入门笔记(1)——什么是深度学习?在很多人眼里,深度学习(DeepLearning)是一个十分高大上的研究手段,它可以模拟人的判断,让数据处理和结果输出具有“人性”,在没接触过的人看来,深度学习简直是“玄学”范畴,网络一通,谁都不爱。但是,在所有人追捧深度学习的同时,对学习这一手段却是望而却步,更有甚者在网上买完“韭菜课”后,原理部分还没看完就不在继续学习。其实,说句实话,深度学习只是被过
- (课程笔记)深度学习入门 - 1 - OverView
牛顿第八定律
深度学习入门笔记笔记深度学习人工智能
一、机器学习算法的过程与结果1、首先要得到标签化数据集(DataSet),既然是标签化,那应该是监督学习模式,而且此处的数据集应该分化为训练用集(TrainSet)和测试用集(TestSet),训练用集用于训练最终的算法模型,而测试用集用于测试训练的算法模型是否性能良好,是否能满足实际需求;2、设置并给出机器学习的算法模型(Model);3、设置期望的损失函数(LossFcn)和优化器(Optim
- 深度学习入门笔记(6)—— Logistic Regression
cnhwl
深度学习入门笔记深度学习机器学习逻辑回归人工智能python
对比第三节中的Adaline和LogisticRegression,可以发现它们只有两点不同:1、激活函数,Adaline中的激活函数是恒等函数(线性),而LogisticRegression中的激活函数是Sigmoid函数(非线性);2、损失函数,Adaline中的损失函数是均方误差,而LogisticRegression中的损失函数则是交叉熵。Sigmoid函数如图所示,其值域为0到1,输入为
- 《深度学习入门》学习笔记
YY_oot
机器学习深度学习python神经网络人工智能
原书:《深度学习入门:基于Python的理论与实现》文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧6.1寻找最优参数6.3权重的初始值6.4正则化6.4超参数的验证第七章卷积神经网络卷积池化CNN的可视化代表性的CNN第八章深度学习提高识别精度VGGGoogLeNetResNe
- 深度学习入门笔记(三)常用AI术语
zhanghui_cuc
深度学习笔记人工智能深度学习笔记
本节我们介绍一些深度学习领域常用的术语。训练确定模型中的参数的过程,我们就称为“训练”。Epoch遍历一遍训练数据就叫作“一个Epoch”。训练模型的时候,我们要告诉模型预计训练多少个Epoch,但这个值并不是固定的,因为并没有一个准确的Epoch数能一定能得到一个比较好的模型。我们有一个标准:模型训练的Epoch数必须要让模型达到一个收敛的状态。并且为了模型有更多的选择,我们可以让模型收敛后,再
- 深度学习入门笔记4 深度神经网络
深度学习从入门到放弃
深度学习笔记神经网络深度学习人工智能机器学习算法
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
- 深度学习入门笔记:第二章感知机
维持好习惯
深度学习深度学习笔记人工智能
深度学习入门笔记:第二章感知机笔记来源书籍:《深度学习入门:基于+Python+的理论与实现》文章目录深度学习入门笔记:第二章感知机前言为什么学习感知机2.1感知机是什么2.2简单逻辑电路2.2.1与门2.2.2与非门和或门2.3感知机实现2.3.1简单的实现2.3.2导入权重和偏置2.3.3使用权重和偏置的实现2.4感知机的局限性2.4.1异或门2.4.2线性和非线性2.5多层感知机2.5.1已
- 深度学习入门学习笔记之——神经网络
前丨尘忆·梦
tensorflow深度学习神经网络深度学习
神经网络上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消
- 深度学习入门笔记(二)神经元 激励函数 神经网络
花落雨微扬
神经网络网络深度学习人工智能机器学习
声明:本文内容源自《白话深度学习与tensorflow》高扬卫峥编著一书读书笔记!!!神经网络:神经网络又称为人工神经网络(artificialneutralnetwork,ANN)。神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系神经元:如上图所示是一个最简单的神经元,有一个输入,一个输出。我们现在所使用的神经元通常有两个部分组成,一个是“线性模型”,另一个是“激励函数”。假
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- 深度学习入门笔记(二)神经元的结构
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
神经网络的基本单元是神经元,本节我们介绍神经元的结构。2.1神经元一个神经元是由下面5部分组成的:输入:x1,x2,…,xk。权重:w1,w2,…,wk。权重的个数与神经元输入的个数相同。偏移项:可省略。激活函数:一般都会有,根据实际问题也是可以省略的。输出。2.2激活函数激活函数有很多种,不同的激活函数适用于不同的问题。二分类问题我们一般采用Sigmoid函数,多分类问题我们采用Softmax函
- 深度学习入门笔记(七)卷积神经网络CNN
zhanghui_cuc
深度学习笔记深度学习笔记cnn
我们先来总结一下人类识别物体的方法:定位。这一步对于人眼来说是一个很自然的过程,因为当你去识别图标的时候,你就已经把你的目光放在了图标上。虽然这个行为不是很难,但是很重要。看线条。有没有文字,形状是方的圆的,还是长的短的等等。看细节。纹理、颜色、方向等。卷积神经网络就是对上述过程的程序实现。7.1卷积卷积在卷积神经网络中的主要作用是提取图片的特征,同时保留原来图片中各个像素的相对位置(空间)关系。
- 深度学习入门笔记(八)实战经验
zhanghui_cuc
深度学习笔记深度学习笔记性能优化
前面几节介绍了很多理论,难免会好奇:理论如何与实战结合呢?本节我们就穿插一点实战经验,来换换脑子~1.显卡warmup进行深度学习训练和推理时,往往第一次运行的耗时比较高,这是因为显卡需要warm-up,就是“热身”,才能发挥出显卡的性能。关于热身,个人理解,显卡开始工作时控制单元需要对资源进行调度,例如分配warp等。这些应该都是在第一次推理的时候进行。类似的,举个栗子,在F1比赛中,每场赛车的
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1