hdu(4323)HDU 4323 Magic Number 编辑距离(经典DP)

下面是关于编辑距离的有关介绍;

 

一,字符串A到B的编辑距离是指,只用插入、删除和替换三种操作,最少需要多少步可以把A变成B。

二,首先,我们观察Levenshtein距离的性质。令d(x,y)表示字符串x到y的Levenshtein距离,那么显然:

      1. d(x,y) = 0 当且仅当 x=y  (Levenshtein距离为0 <==> 字符串相等)
      2. d(x,y) = d(y,x)     (从x变到y的最少步数就是从y变到x的最少步数)
      3. d(x,y) + d(y,z) >= d(x,z)  (从x变到z所需的步数不会超过x先变成y再变成z的步数)

 

 

转自Matrix67

 除了字符串匹配、查找回文串、查找重复子串等经典问题以外,日常生活中我们还会遇到其它一些怪异的字符串问题。比如,有时我们需要知道给定的两个字符串“有多像”,换句话说两个字符串的相似度是多少。1965年,俄国科学家Vladimir Levenshtein给字符串相似度做出了一个明确的定义叫做Levenshtein距离,我们通常叫它“编辑距离”。

例如,从FAME到GATE需要两步(两次替换),从GAME到ACM则需要三步(删除G和E再添加C)。Levenshtein给出了编辑距离的一般求法,就是大家都非常熟悉的经典动态规划问题。
    在自然语言处理中,这个概念非常重要,例如我们可以根据这个定义开发出一套半自动的校对系统:查找出一篇文章里所有不在字典里的单词,然后对于每个单词,列出字典里与它的Levenshtein距离小于某个数n的单词,让用户选择正确的那一个。n通常取到2或者3,或者更好地,取该单词长度的1/4等等。这个想法倒不错,但算法的效率成了新的难题:查字典好办,建一个Trie树即可;但怎样才能快速在字典里找出最相近的单词呢?这个问题难就难在,Levenshtein的定义可以是单词任意位置上的操作,似乎不遍历字典是不可能完成的。现在很多软件都有拼写检查的功能,提出更正建议的速度是很快的。它们到底是怎么做的呢?1973年,Burkhard和Keller提出的BK树有效地解决了这个问题。这个数据结构强就强在,它初步解决了一个看似不可能的问题,而其原理非常简单。

    最后这一个性质叫做三角形不等式。就好像一个三角形一样,两边之和必然大于第三边。给某个集合内的元素定义一个二元的“距离函数”,如果这个距离函数同时满足上面说的三个性质,我们就称它为“度量空间”。我们的三维空间就是一个典型的度量空间,它的距离函数就是点对的直线距离。度量空间还有很多,比如Manhattan距离,图论中的最短路,当然还有这里提到的Levenshtein距离。就好像并查集对所有等价关系都适用一样,BK树可以用于任何一个度量空间。

    建树的过程有些类似于Trie。首先我们随便找一个单词作为根(比如GAME)。以后插入一个单词时首先计算单词与根的Levenshtein距离:如果这个距离值是该节点处头一次出现,建立一个新的儿子节点;否则沿着对应的边递归下去。例如,我们插入单词FAME,它与GAME的距离为1,于是新建一个儿子,连一条标号为1的边;下一次插入GAIN,算得它与GAME的距离为2,于是放在编号为2的边下。再下次我们插入GATE,它与GAME距离为1,于是沿着那条编号为1的边下去,递归地插入到FAME所在子树;GATE与FAME的距离为2,于是把GATE放在FAME节点下,边的编号为2。
     
    查询操作异常方便。如果我们需要返回与错误单词距离不超过n的单词,这个错误单词与树根所对应的单词距离为d,那么接下来我们只需要递归地考虑编号在d-n到d+n范围内的边所连接的子树。由于n通常很小,因此每次与某个节点进行比较时都可以排除很多子树。
    举个例子,假如我们输入一个GAIE,程序发现它不在字典中。现在,我们想返回字典中所有与GAIE距离为1的单词。我们首先将GAIE与树根进行比较,得到的距离d=1。由于Levenshtein距离满足三角形不等式,因此现在所有离GAME距离超过2的单词全部可以排除了。比如,以AIM为根的子树到GAME的距离都是3,而GAME和GAIE之间的距离是1,那么AIM及其子树到GAIE的距离至少都是2。于是,现在程序只需要沿着标号范围在1-1到1+1里的边继续走下去。我们继续计算GAIE和FAME的距离,发现它为2,于是继续沿标号在1和3之间的边前进。遍历结束后回到GAME的第二个节点,发现GAIE和GAIN距离为1,输出GAIN并继续沿编号为0到2的边递归下去(那条编号为4的边连接的子树又被排除掉了,在这个图中没有编号为0的边)……
    实践表明,一次查询所遍历的节点不会超过所有节点的5%到8%,两次查询则一般不会17-25%,效率远远超过暴力枚举。适当进行缓存,减小Levenshtein距离常数n可以使算法效率更高。


 

 

注意为了方面处理,我们要将字符串下标从一开始;

魔方数变成询问数和询问数变成魔方数相同;

但是此题是将魔方数变成询问数来处理;

所以当把询问数变成魔方数来处理,虽然答案对,但提交错误。。

 

 

#include"stdio.h"
#include"string.h"
char str[2010][2010],s[2010];
int dp[2010][2010];
#define min(a,b) a>b?b:a
int main()
{
    int len,len1,k,h,r=1,n,m,sum,p;
    int i,j;
    scanf("%d",&k);
    while(k--)
    {
        scanf("%d%d",&n,&m);
        for(i=0;i         {
            scanf("%s",str[i]+1);
        }
        printf("Case #%d:\n",r++);
        while(m--)
        {
            scanf("%s%d",s+1,&h);
            len=strlen(s+1);
            sum=0;
            for(i=0;i             {
                len1=strlen(str[i]+1);
                for(j=0;j<=len;j++)
                    dp[0][j]=j;
                for(j=0;j<=len1;j++)
                    dp[j][0]=j;
                for(j=1;j<=len1;j++)
                {
                    for(p=1;p<=len;p++)
                    {
                        dp[j][p]=min(dp[j][p-1]+1,dp[j-1][p]+1);
                        dp[j][p]=min(dp[j][p],dp[j-1][p-1]+(str[i][j]==s[p]?0:1));
                    }
                }
                if(dp[len1][len]<=h)
                    sum++;
            }
            printf("%d\n",sum);
        }
    }
    return 0;
}

你可能感兴趣的:(动态规划,回味,编辑距离)