[分享]个人收集的一些关于小波分析的matlab程序
都是从网上收集来的,由于时间比较久,处处都忘记了,如果是谁的原创请和我联系,我在帖子中标出来的内容比较多,将会逐步贴出来
提升法97经典程序 (二楼)
2代小波示意程序 (三楼)
二代小波漫谈 (四楼)
小波滤波器构造和消噪程序(2个) (五楼)
小波谱分析mallat算法经典程序 (六楼)
2维小波变换经典程序 (七楼)
基于LeventCodes平台的小波去噪程序包 (十一楼)
连续小波和离散小波分析的应用实例(十二楼)
小波插值与小波构造(3个程序)(十三楼)
采用多孔trous算法(undecimated wavelet transform)实现小波变换(十四楼)
Daubechies小波基的构造(十五楼)
消失矩作用的程序(二十三楼)
平移变换平移法(cycle_spinning)消除gibbs效应 (二十四楼)
使用小波包变换分析信号的MATLAB程序(五十四楼)
基于小波消噪的雷达回波检测,可以检测雷达回波的有无及其准确的位置(五十五楼)
二维小波变换(正和逆变换)(五十六楼)
第二代小波变换源码(五十七楼)
利用小波变换实现对电能质量检测的算法实现(五十八楼)
基于小波变换的图象去噪 Normalshrink算法(五十九楼)
基于小波变换模极大的多尺度图像边缘检测(六十楼)
利用小波变根据二进制数(水印)来改变图片,提取其中一个子带的直方图(六十一楼)
用小波函数构建神经网络的源程序(六十二楼)
利用小波和霍夫曼对单声道文件进行压缩编码 并解码输出(六十三楼)
用小波神经网络来对时间序列进行预测(六十四楼)
基于小波特征提取方法的图象匹配算法(六十五楼)
今天(2007年4月4日)先贴到这里
[[i] 本帖最后由 simon21 于 2007-4-4 07:39 编辑 [/i]]
提升法97经典程序
[code]%% 本程序实现任意偶数大小图像第二代双正交97提升小波变换 %% 注1: 采用标准正交方法,对行列采用不同矩阵(和matlab里不同)
%% 注2: 为了保证正交,所有边界处理,全部采用循环处理
%% 注3: 正交性验证,将单位阵带入函数,输出仍是单位阵(matlab不具有此性质)
%% 注4: 此程序是矩阵实现,所以图像水平分量和垂直分量估计被交换位置
%% 注5: 此程序实现的是类小波(wavelet-like)变换,是介于小波包变换与小波变换之间的变换
%% 注6: 此程序每层变换相对原图像矩阵,产生的矩阵都是正交阵,这和小波包一致
%% 注7: 但小波变换每层产生的矩阵,是相对每个待分解子块的正交矩阵,而不是原图像的正交矩阵
%% 注8: 且小波变换产生的正交矩阵维数,随分解层数2分减少
%% 注9: 提升系数可以在MATLAB7.0以上版本,用liftwave('9.7')获取,这里直接给出,考虑兼容性
%% 注10:由于MATLAB数组下标从1开始,所以注意奇偶序列的变化
%% 注11:d为对偶上升,即预测;p为原上升,即更新 %% 编程人 沙威 安徽大学
%% 编程时间 2004年12月18日 %% x输入图像,y输出图像
%% flag_trans为正变换或反变换标志,0执行正变换,1执行反变换
%% flag_max,是否最大层数变换标志,0执行用户设定层数,1执行最大层数变换
%% layer,用户层数设置(小于最大层) function y=db97(x,flag_trans,flag_max,layer); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.输入参数检查 % 矩阵维数判断
[sa,sb]=size(x); if (sa~=sb) % 防止非图像数据
errordlg('非图像数据!');
error('非图像数据!');
end; % 变换标志判断
[sa,sb]=size(flag_trans);
if ((sa~=1) | (sb~=1)) % 变换标志错误
errordlg('变换标志错误!');
error('变换标志错误!');
end; if ((flag_trans~=1) & (flag_trans~=0)) % 变换标志错误
errordlg('变换标志错误!');
error('变换标志错误!');
end; % 最大层数标志判断
[sa,sb]=size(flag_max);
if ((sa~=1) | (sb~=1)) % 最大层数标志错误
errordlg('最大层数标志错误!');
error('最大层数标志错误!');
end; if ((flag_max~=1) & (flag_max~=0)) % 最大层数标志错误
errordlg('最大层数标志错误!');
error('最大层数标志错误!');
end; % 用户设置层数判断
if (flag_max~=1) [sa,sb]=size(layer);
if ((sa~=1) | (sb~=1)) % 层数设置错误
errordlg('层数设置错误!');
error('层数设置错误!');
end; if (flag_max<0) % 层数设置错误
errordlg('层数设置错误!');
error('层数设置错误!');
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.提升系数确定
% t1=liftwave('9.7'); % 获取提升系数(MATLAB7.0以后) d1=[-1.586100000000000e+000,-1.586134342069360e+000];
p1=[1.079600000000000e+000,-5.298011857188560e-002];
d2=[-8.829110755411875e-001,-8.829110755411875e-001];
p2=[4.435068520511142e-001,1.576123746148364e+000];
d3=-8.698644516247808e-001;
p3=-1.149604398860242e+000;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解层数确定
% 采用用户输入和自动给出最大层数两种方法 N=length(x); % 矩阵大小
S=N; % 变量
s=log2(N); % 最大循环次数
n1=N/2; % 初始一半矩阵大小
n2=N; % 初始矩阵大小
u=0; % 初始值 % 对非2的整数幂大小图像确定最大分解层数
for ss=1:s
if (mod(S,2)==0)
u=u+1;
S=S/2;
end;
end;
u=u-1; % 分解最大层数减1(后面的边界处理造成) % 最大层数确定
if (flag_max==0) % 手动输入
T=layer; % 用户输入值
else % 自动确定最大层数
T=u; % 分解最大层数
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 4.最大层数和图像大小检查 if (T>u) % 防止用户层数越界
errordlg('已超过最大分解层数!或者非偶数大小图像!');
error('已超过最大分解层数!或者非偶数大小图像!');
end; if (mod(N,2)~=0) % 防止图像大小错误
errordlg('非偶数大小图像!');
error('非偶数大小图像!');
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.提升法正变换 if (flag_trans==0)
for time=1:T; % 行正变换
% d;
x1(n1,:)=x(n2,:)+d1(2)*x(n2-1,:)+d1(1)*x(1,:);
x1([1:n1-1],:)=x([2:2:n2-2],:)+d1(2)*x([1:2:n2-3],:)+d1(1)*x([3:2:n2-1],:);
% p;
x(1,:)=x(1,:)+p1(2)*x1(n1,:)+p1(1)*x1(1,:);
x([2:n1],:)=x([3:2:n2-1],:)+p1(2)*x1([1:n1-1],:)+p1(1)*x1([2:n1],:);
x([n1+1:n2],:)=x1([1:n1],:);
% d;
x(n1+1,:)=x(n1+1,:)+d2(2)*x(n1,:)+d2(1)*x(1,:);
x([n1+2:n2],:)=x([n1+2:n2],:)+d2(2)*x([1:n1-1],:)+d2(1)*x([2:n1],:);
% p;
x(n1,:)=x(n1,:)+p2(2)*x(n1+1,:)+p2(1)*x(n1+2,:);
x(n1-1,:)=x(n1-1,:)+p2(2)*x(n2,:)+p2(1)*x(n1+1,:);
x([1:n1-2],:)=x([1:n1-2],:)+p2(2)*x([n1+2:n2-1],:)+p2(1)*x([n1+3:n2],:);
% 归一
x([1:n1],:)=p3*x([1:n1],:);
x([n1+1:n2],:)=d3*x([n1+1:n2],:); clear x1;
% 列正变换
% d;
x1(:,[1:n1])=x(:,[2:2:n2]);
% p;
x(:,1)=x(:,1)-d1(1)*x1(:,n1)-d1(2)*x1(:,1);
x(:,[2:n1])=x(:,[3:2:n2-1])-d1(1)*x1(:,[1:n1-1])-d1(2)*x1(:,[2:n1]);
x(:,[n1+1:n2])=x1(:,[1:n1]);
% d;
x(:,n2)=x(:,n2)-p1(1)*x(:,n1)-p1(2)*x(:,1);
x(:,[n1+1:n2-1])=x(:,[n1+1:n2-1])-p1(1)*x(:,[1:n1-1])-p1(2)*x(:,[2:n1]);
% p;
x(:,n1,:)=x(:,n1)-d2(1)*x(:,n2)-d2(2)*x(:,n1+1);
x(:,[1:n1-1])=x(:,[1:n1-1])-d2(1)*x(:,[n1+1:n2-1])-d2(2)*x(:,[n1+2:n2]);
% d;
x(:,n1+1)=x(:,n1+1)-p2(1)*x(:,n1-1)-p2(2)*x(:,n1);
x(:,n1+2)=x(:,n1+2)-p2(1)*x(:,n1)-p2(2)*x(:,1);
x(:,[n1+3:n2])=x(:,[n1+3:n2])-p2(1)*x(:,[1:n1-2])-p2(2)*x(:,[2:n1-1]);
% 归一
x(:,[1:n1])=d3*x(:,[1:n1]);
x(:,[n1+1:n2])=p3*x(:,[n1+1:n2]); clear x1;
n2=n2/2; % 原大小
n1=n2/2; % 一半大小
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 6.提升法反变换 else
n2=N/(2.^(T-1)); % 分解最小子块维数
n1=n2/2;
for time=1:T; % 行反变换
% 去归一
x([1:n1],:)=x([1:n1],:)/p3;
x([n1+1:n2],:)=x([n1+1:n2],:)/d3; % 反p;
x(n1,:)=x(n1,:)-p2(2)*x(n1+1,:)-p2(1)*x(n1+2,:);
x(n1-1,:)=x(n1-1,:)-p2(2)*x(n2,:)-p2(1)*x(n1+1,:);
x([1:n1-2],:)=x([1:n1-2],:)-p2(2)*x([n1+2:n2-1],:)-p2(1)*x([n1+3:n2],:);
% 反d;
x(n1+1,:)=x(n1+1,:)-d2(2)*x(n1,:)-d2(1)*x(1,:);
x([n1+2:n2],:)=x([n1+2:n2],:)-d2(2)*x([1:n1-1],:)-d2(1)*x([2:n1],:);
% 反p;
x1(1,:)=x(1,:)-p1(2)*x(n2,:)-p1(1)*x(n1+1,:);
x1([2:n1],:)=x([2:n1],:)-p1(2)*x([n1+1:n2-1],:)-p1(1)*x([n1+2:n2],:);
% 反d;
x(n2,:)=x(n2,:)-d1(2)*x1(n1,:)-d1(1)*x1(1,:);
x([2:2:n2-2],:)=x([n1+1:n2-1],:)-d1(2)*x1([1:n1-1],:)-d1(1)*x1([2:n1],:);
% 偶数
x([1:2:n2-1],:)=x1([1:n1],:);
clear x1;
% 列反变换
% 归一
x(:,[1:n1])=x(:,[1:n1])/d3;
x(:,[n1+1:n2])=x(:,[n1+1:n2])/p3; % 反d;
x(:,n1+1)=x(:,n1+1)+p2(1)*x(:,n1-1)+p2(2)*x(:,n1);
x(:,n1+2)=x(:,n1+2)+p2(1)*x(:,n1)+p2(2)*x(:,1);
x(:,[n1+3:n2])=x(:,[n1+3:n2])+p2(1)*x(:,[1:n1-2])+p2(2)*x(:,[2:n1-1]);
% 反p;
x(:,n1,:)=x(:,n1)+d2(1)*x(:,n2)+d2(2)*x(:,n1+1);
x(:,[1:n1-1])=x(:,[1:n1-1])+d2(1)*x(:,[n1+1:n2-1])+d2(2)*x(:,[n1+2:n2]);
% 反d;
x(:,n2)=x(:,n2)+p1(1)*x(:,n1)+p1(2)*x(:,1);
x(:,[n1+1:n2-1])=x(:,[n1+1:n2-1])+p1(1)*x(:,[1:n1-1])+p1(2)*x(:,[2:n1]);
% 反p;
x1(:,1)=x(:,1)+d1(1)*x(:,n2)+d1(2)*x(:,n1+1);
x1(:,[2:n1])=x(:,[2:n1])+d1(1)*x(:,[n1+1:n2-1])+d1(2)*x(:,[n1+2:n2]); % 奇偶
x(:,[2:2:n2])=x(:,[n1+1:n2]);
x(:,[1:2:n2-1])=x1(:,[1:n1]); clear x1;
n2=n2*2; % 原大小
n1=n2/2; % 一半大小 end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 7.结果输出 y=x;
% 传输最后结果 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 8.内存清理 clear x;
clear flag_max;
clear layer;
clear flag_trans;
clear N;
clear n1;
clear n2;
clear s;
clear ss;
clear u;
clear d1;
clear d2;
clear d3;
clear p1;
clear p2;
clear p3;
clear sa;
clear sb;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[/code]
[[i] 本帖最后由 yejet 于 2006-8-31 20:32 编辑 [/i]]
2代小波示意程序
[code]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 此程序用提升法实现第二代小波变换
%% 我用的是非整数阶小波变换
%% 采用时域实现,步骤先列后行
%% 正变换:分裂,预测,更新;
%% 反变换:更新,预测,合并
%% 只做一层(可以多层,而且每层的预测和更新方程不同) clear;clc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
% 1.调原始图像矩阵 load wbarb; % 下载图像
f=X; % 原始图像
% f=[0 0 0 0 0 0 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 1 4 8 8 4 1 0 ;...
% 0 0 2 4 4 2 0 0 ;...
% 0 0 0 1 1 0 0 0 ;...
% 0 0 0 0 0 0 0 0 ;]; % 原始图像矩阵 N=length(f); % 图像维数
T=N/2;
% 子图像维数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%正变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.列变换
% A.分裂(奇偶分开) f1=f([1:2:N-1],:); % 奇数
f2=f([2:2:N],:); % 偶数 % f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行 % B.预测 for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)-f2(i_hc,:);
end; % high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行 % C.更新 for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)+1/2*high_frequency_column(i_lc,:);
end; % D.合并
f_column([1:1:T],:)=low_frequency_column([1:T],:);
f_column([T+1:1:N],:)=high_frequency_column([1:T],:);
figure(1)
colormap(map);
image(f); figure(2)
colormap(map);
image(f_column);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.行变换
% A.分裂(奇偶分开) f1=f_column(:,[1:2:N-1]); % 奇数
f2=f_column(:,[2:2:N]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行 % B.预测 for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)-f2(:,i_hr);
end; % high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行 % C.更新 for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)+1/2*high_frequency_row(:,i_lr);
end; % D.合并
f_row(:,[1:1:T])=low_frequency_row(:,[1:T]);
f_row(:,[T+1:1:N])=high_frequency_row(:,[1:T]);
figure(3)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%反变换%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 1.行变换
% A.提取(低频高频分开) f1=f_row(:,[T+1:1:N]); % 奇数
f2=f_row(:,[1:1:T]); % 偶数
% f2(:,T+1)=f2(:,1); % 补行 % B.更新 for i_lr=1:T;
low_frequency_row(:,i_lr)=f2(:,i_lr)-1/2*f1(:,i_lr);
end; % C.预测 for i_hr=1:T;
high_frequency_row(:,i_hr)=f1(:,i_hr)+low_frequency_row(:,i_hr);
end; % high_frequency_row(:,T+1)=high_frequency_row(:,1); % 补行
% D.合并(奇偶分开合并)
f_row(:,[2:2:N])=low_frequency_row(:,[1:T]);
f_row(:,[1:2:N-1])=high_frequency_row(:,[1:T]);
figure(4)
colormap(map);
image(f_row);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2.列变换
% A.提取(低频高频分开) f1=f_row([T+1:1:N],:); % 奇数
f2=f_row([1:1:T],:); % 偶数 % f1(:,T+1)=f1(:,1); % 补列
% f2(T+1,:)=f2(1,:); % 补行 % B.更新 for i_lc=1:T;
low_frequency_column(i_lc,:)=f2(i_lc,:)-1/2*f1(i_lc,:);
end; % C.预测 for i_hc=1:T;
high_frequency_column(i_hc,:)=f1(i_hc,:)+low_frequency_column(i_hc,:);
end; % high_frequency_column(T+1,:)=high_frequency_column(1,:); % 补行 % D.合并(奇偶分开合并)
f_column([2:2:N],:)=low_frequency_column([1:T],:);
f_column([1:2:N-1],:)=high_frequency_column([1:T],:);
figure(5)
colormap(map);
image(f_column);
[/code]
[[i] 本帖最后由 yejet 于 2006-8-31 20:32 编辑 [/i]]
二代小波漫谈
现在我就举例,对一个8点序列,怎样实现第二代小波变换。1. 奇偶分开。
非常简单,就是[2,4,6,8]组成一列向量,[1,3,5,7]组成一列向量。
2. 预测。
用[2,4,6,8]来预测[1,3,5,7]。比如说1,3估计2; 3,5估计4; 5,7估计6; 7,1估计8。(边缘处理,我采用循环方法)。估计公式可以用别人的,也可以自己做。举一个线性的例子:2=1*a+3*b,4=3*a+ 5*b,...,其他的都一样。这样我们就可找到最优的a,b,使得(2-(1*a+3*b)).^2+(4-(3*a+5*b)).^2+...最小化。就是最小均方准则。若正好为零,说明偶可以完全预测奇,也就是我们只要存储偶数列向量,和a,b就可以了,压缩也就是实现了。对于信号很长序列,就等于压缩了一半。当然,我们可以采用更复杂的立方差值预测,多项式预测,或其它的准则,来使其最小,这样我们的压缩也就得到了最优。
3. 提升。
我们总希望,均方为零,但可望不可及。于是,提升就需要了。我们经过预测后,要存储的是偶数序列[2,4,6,8],新的奇数序列[n1,n3,n5, n7]=[2-(1*a+3*b),4-(3*a+5*b),...]和线性变换系数(a,b)。这里新的奇数序列就是高频分量。但偶数序列是不能完全代表信号的性质的,有所差距。所以我们要对偶数序列进行修正。即所谓的提升。我们这次用个简单的提升吧。[n2,n4,n6,n8]=[2,4,6,8]+ k*[n1,n3,n5,n7]。[n2,n4,n6,n8],就是要分解的低频分量。那k怎么求呢?因为要保持n2,n4,n6,n8和原始信号 [1,2,3,4,5,6,7,8]一样的性质。一般就是均值和高阶矩。这里就一个未知数k,所以用均值相等,就行了。1/8*(1+2+3+..8)= 1/4*(n2+n4+n6+n8)。k很容易就求出来了。我们最终存储的就是[n1,n3,n5,n7]和[n2,n4,n6,n8]以及a,b,k。
现在,所谓的第二代就完了。再说几句。
1.反变换,就是3->2->1。
2.二维。先行提升,再列提升。(我置顶的贴子里有harr二维提升的源代码)。
3.整数阶。就是加一个取整。
4.多层或小波包提升,就是在对序列[n1,n3,n5,n7]或[n2,n4,n6,n8],再做1->2->3。
5.灵活。不一定是a,b,也可能就一个a,或a,b,c;不一定是一个k,也可能是k1,k2。但越多计算量太大。最好是用大师们做好的CDF,5/3,7/9等。
6.最重要的,任何一代小波,总可以通过一次或多次提升实现。它和一代小波没有本质区别。
7.优势。文献都有,我随便谈谈。时域实现,最优压缩,无边缘效应,灵活多变,无损压缩,编程方便,速度快。
文章写完了,希望对大家有帮助。最主要的,动手编,不要依赖MATLABM,这样才有所体会。希望和大家多交流。
给 simon21 加一点人气
[[i] 本帖最后由 simon21 于 2007-4-4 07:05 编辑 [/i]]
小波滤波器构造和消噪程序(2个)
1.重构[code]% mallet_wavelet.m
% 此函数用于研究Mallet算法及滤波器设计
% 此函数仅用于消噪
a=pi/8; %角度赋初值
b=pi/8;
%低通重构FIR滤波器h0(n)冲激响应赋值
h0=cos(a)*cos(b);
h1=sin(a)*cos(b);
h2=-sin(a)*sin(b);
h3=cos(a)*sin(b);
low_construct=[h0,h1,h2,h3];
L_fre=4; %滤波器长度
low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器
for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器
if(mod(i_high,2)==0);
coefficient=-1;
else
coefficient=1;
end
high_construct(1,i_high)=low_decompose(1,i_high)*coefficient;
end
high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)
L_signal=100; %信号长度
n=1:L_signal; %信号赋值
f=10;
t=0.001;
y=10*cos(2*pi*50*n*t).*exp(-20*n*t);
figure(1);
plot(y);
title('原信号');
check1=sum(high_decompose); %h0(n)性质校验
check2=sum(low_decompose);
check3=norm(high_decompose);
check4=norm(low_decompose);
l_fre=conv(y,low_decompose); %卷积
l_fre_down=dyaddown(l_fre); %抽取,得低频细节
h_fre=conv(y,high_decompose);
h_fre_down=dyaddown(h_fre); %信号高频细节
figure(2);
subplot(2,1,1)
plot(l_fre_down);
title('小波分解的低频系数');
subplot(2,1,2);
plot(h_fre_down);
title('小波分解的高频系数');
l_fre_pull=dyadup(l_fre_down); %0差值
h_fre_pull=dyadup(h_fre_down);
l_fre_denoise=conv(low_construct,l_fre_pull);
h_fre_denoise=conv(high_construct,h_fre_pull);
l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响
h_fre_keep=wkeep(h_fre_denoise,L_signal);
sig_denoise=l_fre_keep+h_fre_keep; %信号重构
compare=sig_denoise-y; %与原信号比较
figure(3);
subplot(3,1,1)
plot(y);
ylabel('y'); %原信号
subplot(3,1,2);
plot(sig_denoise);
ylabel('sig/_denoise'); %重构信号
subplot(3,1,3);
plot(compare);
ylabel('compare'); %原信号与消噪后信号的比较[/code]
2.消噪
[quote]% mallet_wavelet.m
% 此函数用于研究Mallet算法及滤波器设计
% 此函数用于消噪处理
%角度赋值
%此处赋值使滤波器系数恰为db9
%分解的高频系数采用db9较好,即它的消失矩较大
%分解的有用信号小波高频系数基本趋于零
%对于噪声信号高频分解系数很大,便于阈值消噪处理
[l,h]=wfilters('db10','d');
low_construct=l;
L_fre=20; %滤波器长度
low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器
for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器
if(mod(i_high,2)==0);
coefficient=-1;
else
coefficient=1;
end
high_construct(1,i_high)=low_decompose(1,i_high)*coefficient;
end
high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)
L_signal=100; %信号长度
n=1:L_signal; %原始信号赋值
f=10;
t=0.001;
y=10*cos(2*pi*50*n*t).*exp(-30*n*t);
zero1=zeros(1,60); %信号加噪声信号产生
zero2=zeros(1,30);
noise=[zero1,3*(randn(1,10)-0.5),zero2];
y_noise=y+noise;
figure(1);
subplot(2,1,1);
plot(y);
title('原信号');
subplot(2,1,2);
plot(y_noise);
title('受噪声污染的信号');
check1=sum(high_decompose); %h0(n),性质校验
check2=sum(low_decompose);
check3=norm(high_decompose);
check4=norm(low_decompose);
l_fre=conv(y_noise,low_decompose); %卷积
l_fre_down=dyaddown(l_fre); %抽取,得低频细节
h_fre=conv(y_noise,high_decompose);
h_fre_down=dyaddown(h_fre); %信号高频细节
figure(2);
subplot(2,1,1)
plot(l_fre_down);
title('小波分解的低频系数');
subplot(2,1,2);
plot(h_fre_down);
title('小波分解的高频系数');
% 消噪处理
for i_decrease=31:44;
if abs(h_fre_down(1,i_decrease))>=0.000001
h_fre_down(1,i_decrease)=(10^-7);
end
end
l_fre_pull=dyadup(l_fre_down); %0差值
h_fre_pull=dyadup(h_fre_down);
l_fre_denoise=conv(low_construct,l_fre_pull);
h_fre_denoise=conv(high_construct,h_fre_pull);
l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响
h_fre_keep=wkeep(h_fre_denoise,L_signal);
sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构
%平滑处理
for j=1:2
for i=60:70;
sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/2;
end;
end;
compare=sig_denoise-y; %与原信号比较
figure(3);
subplot(3,1,1)
plot(y);
ylabel('y'); %原信号
subplot(3,1,2);
plot(sig_denoise);
ylabel('sig/_denoise'); %消噪后信号
subplot(3,1,3);
plot(compare);
ylabel('compare'); %原信号与消噪后信号的比较 [/quote]
[[i] 本帖最后由 simon21 于 2007-4-4 07:04 编辑 [/i]]
小波谱分析mallat算法经典程序
[code]clc;clear;%% 1.正弦波定义
f1=50; % 频率1
f2=100; % 频率2
fs=2*(f1+f2); % 采样频率
Ts=1/fs; % 采样间隔
N=120; % 采样点数
n=1:N;
y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合
figure(1)
plot(y);
title('两个正弦信号')
figure(2)
stem(abs(fft(y)));
title('两信号频谱')
%% 2.小波滤波器谱分析
h=wfilters('db30','l'); % 低通
g=wfilters('db30','h'); % 高通
h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)
g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)
figure(3);
stem(abs(fft(h)));
title('低通滤波器图')
figure(4);
stem(abs(fft(g)));
title('高通滤波器图')
%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)
sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)
sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)
figure(5); % 信号图
subplot(2,1,1)
plot(real(sig1));
title('分解信号1')
subplot(2,1,2)
plot(real(sig2));
title('分解信号2')
figure(6); % 频谱图
subplot(2,1,1)
stem(abs(fft(sig1)));
title('分解信号1频谱')
subplot(2,1,2)
stem(abs(fft(sig2)));
title('分解信号2频谱')
%% 4.MALLET重构算法
sig1=dyaddown(sig1); % 2抽取
sig2=dyaddown(sig2); % 2抽取
sig1=dyadup(sig1); % 2插值
sig2=dyadup(sig2); % 2插值
sig1=sig1(1,[1:N]); % 去掉最后一个零
sig2=sig2(1,[1:N]); % 去掉最后一个零
hr=h(end:-1:1); % 重构低通
gr=g(end:-1:1); % 重构高通
hr=circshift(hr',1)'; % 位置调整圆周右移一位
gr=circshift(gr',1)'; % 位置调整圆周右移一位
sig1=ifft(fft(hr).*fft(sig1)); % 低频
sig2=ifft(fft(gr).*fft(sig2)); % 高频
sig=sig1+sig2; % 源信号
%% 5.比较
figure(7);
subplot(2,1,1)
plot(real(sig1));
title('重构低频信号');
subplot(2,1,2)
plot(real(sig2));
title('重构高频信号');
figure(8);
subplot(2,1,1)
stem(abs(fft(sig1)));
title('重构低频信号频谱');
subplot(2,1,2)
stem(abs(fft(sig2)));
title('重构高频信号频谱');
figure(9)
plot(real(sig),'r','linewidth',2);
hold on;
plot(y);
legend('重构信号','原始信号')
title('重构信号与原始信号比较') [/code]
[[i] 本帖最后由 simon21 于 2007-4-4 07:04 编辑 [/i]]
2维小波变换经典程序
[code]% FWT_DB.M;
% 此示意程序用DWT实现二维小波变换
% 编程时间2004-4-10,编程人沙威
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;
T=256; % 图像维数
SUB_T=T/2; % 子图维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.进行二维小波分解
l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20)
L=T-length(l);
l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20)
h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
for i=1:T; % 列变换
row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
end;
for j=1:T; % 行变换
line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
end;
decompose_pic=line; % 分解矩阵
% 图像分为四块
lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y)
rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y)
lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y)
rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解结果显示
figure(1);
colormap(map);
subplot(2,1,1);
image(f); % 原始图像
title('original pic');
subplot(2,1,2);
image(abs(decompose_pic)); % 分解后图像
title('decomposed pic');
figure(2);
colormap(map);
subplot(2,2,1);
image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y)
title('/Phi(x)*/Phi(y)');
subplot(2,2,2);
image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y)
title('/Phi(x)*/Psi(y)');
subplot(2,2,3);
image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y)
title('/Psi(x)*/Phi(y)');
subplot(2,2,4);
image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y)
title('/Psi(x)*/Psi(y)');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.重构源图像及结果显示
% construct_pic=decompose_matrix'*decompose_pic*decompose_matrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l_re=l_zeros(end:-1:1); % 重构低通滤波
l_r=circshift(l_re',1)'; % 位置调整
h_re=h_zeros(end:-1:1); % 重构高通滤波
h_r=circshift(h_re',1)'; % 位置调整
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
top_pic=[lt_pic,rt_pic]; % 图像上半部分
t=0;
for i=1:T; % 行插值低频
if (mod(i,2)==0)
topll(i,:)=top_pic(t,:); % 偶数行保持
else
t=t+1;
topll(i,:)=zeros(1,T); % 奇数行为零
end
end;
for i=1:T; % 列变换
topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bottom_pic=[lb_pic,rb_pic]; % 图像下半部分
t=0;
for i=1:T; % 行插值高频
if (mod(i,2)==0)
bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持
else
bottomlh(i,:)=zeros(1,T); % 奇数行为零
t=t+1;
end
end;
for i=1:T; % 列变换
bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积<->FFT
end;
construct1=bottomch_re+topcl_re; % 列变换重构完毕
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
left_pic=construct1(:,1:SUB_T); % 图像左半部分
t=0;
for i=1:T; % 列插值低频
if (mod(i,2)==0)
leftll(:,i)=left_pic(:,t); % 偶数列保持
else
t=t+1;
leftll(:,i)=zeros(T,1); % 奇数列为零
end
end;
for i=1:T; % 行变换
leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
right_pic=construct1(:,SUB_T+1:T); % 图像右半部分
t=0;
for i=1:T; % 列插值高频
if (mod(i,2)==0)
rightlh(:,i)=right_pic(:,t); % 偶数列保持
else
rightlh(:,i)=zeros(T,1); % 奇数列为零
t=t+1;
end
end;
for i=1:T; % 行变换
rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
construct_pic=rightch_re+leftcl_re; % 重建全部图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 结果显示
figure(3);
colormap(map);
subplot(2,1,1);
image(f); % 源图像显示
title('original pic');
subplot(2,1,2);
image(abs(construct_pic)); % 重构源图像显示
title('reconstructed pic');
error=abs(construct_pic-f); % 重构图形与原始图像误值
figure(4);
mesh(error); % 误差三维图像
title('absolute error display'); [/code]
[[i] 本帖最后由 simon21 于 2007-4-4 07:05 编辑 [/i]] 请问能不能指教一下二次样条小波呢?matlab里面如何实现呢?
回复:(simon21)[分享]个人收集的一些关于小波分析的...
基于LeventCodes平台的小波去噪程序包括以下方法:
BivaShrink方法、模型1、模型2、模型3(TrivaShrink方法)、BayesShrink方法、 LAWMLShrink方法的DWT实现和DT_CWT实现。
回复:(simon21)[分享]个人收集的一些关于小波分析的...
连续小波和离散小波分析的应用实例小波插值与小波构造(3个程序)
[code]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 小波构造 function casade
clear;clc;
t=3;
phi=[0,1,0]; h=wfilters('db7','r');
h=h*sqrt(2); h_e=h(1,[2:2:14]);
h_o=h(1,[1:2:13]); for m=1:15;
stem(phi);
drawnow;
pause(1);
ee=conv(h_e,phi);
oo=conv(h_o,phi);
phi(1,[2:2:2*length(ee)])=ee;
phi(1,[1:2:2*length(oo)-1])=oo;
end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cubic_average(立方b样条)
% 均值插值 % 初始化
s=[0 0 1 0 0] % 正弦波
% f=50;
% ts=1/200;
% n=0:16;
% s=sin(2*pi*f*n*ts); % 系数
se=[1/8,6/8,1/8];
so=[4/8,4/8] % 循环
for p=1:10;
t=length(s)-1;
o(1:t)=s(1:t)*so(1)+s(2:t+1)*so(2);
e(1)=s(t+1)*se(1)+s(1)*se(2)+s(2)*se(3);
e(2:t)=s(1:t-1)*se(1)+s(2:t)*se(2)+s(3:t+1)*se(3);
e(t+1)=s(t)*se(1)+s(t+1)*se(2)+s(1)*se(3);
s([1:2:2*t+1])=e([1:t+1]);
s([2:2:2*t])=o([1:t]);
plot(s);
drawnow;
end; % 抽取
t=length(s); % 总长度
p=128; % 需要点数 % 间隔
d=(t-1)/p; % 最终尺度函数
r=s(2:d:t-1); % 画图
figure(2);
plot(r);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cubic_subdivision(立方插值)
% 细分插值 % %% 初始化(尺度函数)
% s=[0,0,1,0,0]; % 正弦函数
n=1:20;
f=50;
ts=1/200;
s=sin(2*pi*f*n*ts); % 指数函数
% n=0:16;
% s=exp(n); % % 系数
a=[-1/16,9/16,9/16,-1/16]; % 循环
for p=1:4;
t=length(s)-1;
o(1)=s(4)*a(1)+s(1)*a(2)+s(2)*a(3)+s(3)*a(4);
o(2:t-1)=s(1:t-2)*a(1)+s(2:t-1)*a(2)+s(3:t)*a(3)+s(4:t+1)*a(4);
o(t)=s(t-2)*a(4)+s(t+1)*a(3)+s(t)*a(2)+s(t-1)*a(1);
s([1:2:2*t+1])=s([1:t+1]);
s([2:2:2*t])=o([1:t]);
plot(s);
drawnow;
end; % % 抽取
% t=length(s); % 总长度
% p=128; % 需要点数
%
% % 间隔
% d=(t-1)/p;
%
% % 最终尺度函数
% r=s(2:d:t-1);
%
% % 画图
% figure(2);
% plot(r);[/code]
[[i] 本帖最后由 simon21 于 2007-4-4 07:06 编辑 [/i]]
采用多孔trous算法(undecimated wavelet transform)实现小波变换
[code]clear;clc;% 1.生成信号
f=50; % 频率
fs=800; % 采样率
T=128; % 信号长度
n=1:T;
y=sin(2*pi*f*n/fs)+2*exp(-f*n/(4*fs)); % 信号
% y=circshift(y.',3).'; %%
2.正变换 l1=wfilters('db4','l')*sqrt(2)/2;
% 参考低通滤波器
l1_zeros=[l1,zeros(1,T-length(l1))]; % 低通滤波器1
h1=wfilters('db4','h')*sqrt(2)/2; % 参考高通滤波器
h1_zeros=[h1,zeros(1,T-length(h1))]; % 高通滤波器1 low1=ifft(fft(y).*fft(l1_zeros)); % 低频分量1
high1=ifft(fft(y).*fft(h1_zeros)); % 高频分量1 l2=dyadup(l1); % 原滤波器插值
l2_zeros=[l2,zeros(1,T-length(l2))]; % 低通滤波器2
h2=dyadup(h1); % 原滤波器插值
h2_zeros=[h2,zeros(1,T-length(h2))]; % 高通滤波器2 low2=ifft(fft(low1).*fft(l2_zeros)); % 低频分量2
high2=ifft(fft(low1).*fft(h2_zeros)); % 高频分量2
%% 3.反变换 lr2=circshift(l2_zeros(end:-1:1).',1).'; % 重构低通滤波器2
hr2=circshift(h2_zeros(end:-1:1).',1).'; % 重构高通滤波器2
lr1=circshift(l1_zeros(end:-1:1).',1).'; % 重构低通滤波器1
hr1=circshift(h1_zeros(end:-1:1).',1).'; % 重构高通滤波器1 lowr=(ifft(fft(low2).*fft(lr2))+ifft(fft(high2).*fft(hr2))); % 重构低频分量1(lowr=low1)
r_s=(ifft(fft(lowr).*fft(lr1))+ifft(fft(high1).*fft(hr1))); % 重构源信号(r_s=y)
%% 4.绘图 figure(1);
plot(y);
title('源信号'); figure(2);
plot(low1,'r');
hold on;
plot(low2,'b');
legend('第一层低频','第二层低频'); figure(3);
plot(high1,'r');
hold on;
plot(high2,'b');
legend('第一层高频','第二层高频'); figure(4);
plot(low1,'r');
hold on;
plot(lowr,'b.');
legend('第一层低频','重构第一层低频'); figure(5);
plot(y,'r');
hold on;
plot(r_s,'b.');
legend('源信号','重构信号'); disp(norm(low1-lowr))
disp(norm(y-r_s))[/code]
[[i] 本帖最后由 simon21 于 2007-4-4 07:07 编辑 [/i]]
此程序实现构造小波基
[code]% 此程序实现构造小波基% periodic_wavelet.m function ss=periodic_wavelet; clear;clc; % global MOMENT; % 消失矩阶数
% global LEFT_SCALET; % 尺度函数左支撑区间
% global RIGHT_SCALET; % 尺度函数右支撑区间
% global LEFT_BASIS; % 小波基函数左支撑区间
% global RIGHT_BASIS; % 小波基函数右支撑区间
% global MIN_STEP; % 最小离散步长
% global LEVEL; % 计算需要的层数(离散精度)
% global MAX_LEVEL; % 周期小波最大计算层数
[s2,h]=scale_integer;
[test,h]=scalet_stretch(s2,h);
wave_base=wavelet(test,h);
ss=periodic_waveletbasis(wave_base);
function [s2,h]=scale_integer; % 本函数实现求解小波尺度函数离散整数点的值
% sacle_integer.m MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
h=wfilters('db10','r'); % 滤波器系数 h=h*sqrt(2); % FI(T)=SQRT(2)*SUM(H(N)*FI(2T-N)) N=0:2*MOMENT-1; for i=LEFT_SCALET+1:RIGHT_SCALET-1
for j=LEFT_SCALET+1:RIGHT_SCALET-1
k=2*i-j+1;
if (k>=1&k<=RIGHT_SCALET+1)
a(i,j)=h(k); % 矩阵系数矩阵
else
a(i,j)=0;
end
end
end [s,w]=eig(a); % 求特征向量,解的基
s1=s(:,1);
s2=[0;s1/sum(s1);0]; % 根据条件SUM(FI(T))=1,求解; % 本函数实现尺度函数经伸缩后的离散值
% scalet_stretch.m function [s2,h]=scalet_stretch(s2,h); MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
for j=1:LEVEL % 需要计算到尺度函数的层数
t=0;
for i=1:2:2*length(s2)-3 % 需要计算的离散点取值(0,1,2,3 -> 1/2, 3/2, 5/2)
t=t+1;
fi(t)=0;
for n=LEFT_SCALET:RIGHT_SCALET; % 低通滤波器冲击响应紧支撑判断
if ((i/2^(j-1)-n)>=LEFT_SCALET&(i/2^(j-1)-n)<=RIGHT_SCALET) % 小波尺度函数紧支撑判断
fi(t)=fi(t)+h(n+1)*s2(i-n*2^(j-1)+1); % 反复应用双尺度方程求解
end
end
end
clear s
n1=length(s2);
n2=length(fi);
for i=1:length(s2)+length(fi) % 变换后的矩阵长度
if (mod(i,2)==1)
s(i)=s2((i+1)/2); % 矩阵奇数下标为小波上一层(0,1,2,3)离散值
else
s(i)=fi(i/2); % 矩阵偶数下标为小波下一层(1/2,3/2,5/2)(经过伸缩变换后)的离散值
end
end
s2=s;
end
% 采用双尺度方程求解小波基函数 PSI(T)
% wavelet.m function wave_base=wavelet(test,h); MOMENT=10; % 消失矩阶数
LEFT_SCALET=0; % 尺度函数左支撑区间
RIGHT_SCALET=2*MOMENT-1; % 尺度函数右支撑区间
LEFT_BASIS=1-MOMENT; % 小波基函数左支撑区间
RIGHT_BASIS=MOMENT; % 小波基函数右支撑区间
MIN_STEP=1/512; % 最小离散步长
LEVEL=-log2(MIN_STEP); % 计算需要的层数(离散精度)
MAX_LEVEL=8; % 周期小波最大计算层数
i=0;
for t=LEFT_BASIS:MIN_STEP:RIGHT_BASIS; % 小波基支撑长度
s=0;
for n=1-RIGHT_SCALET:1-LEFT_SCALET % g(n)取值范围
if((2*t-n)>=LEFT_SCALET&(2*t-n)<=RIGHT_SCALET) % 尺度函数判断
s=s+h(1-n+1)*(-1)^(n)*test((2*t-n)/MIN_STEP+1); % 计算任意精度的小波基函数值
end
end
i=i+1;
wave_base(i)=s;
end[/code]
[[i] 本帖最后由 simon21 于 2007-4-4 07:07 编辑 [/i]]
请问楼主有对称小波的程序吗?谢谢了
[em04] 请问有没有小波系数模极大值的程序啊!
页: [1] 2 3 4