计算机视觉经典论文的参考论文目录

文章目录

    • [1] [OverFeat](https://blog.csdn.net/weixin_41665360/article/details/85715773)
    • [2] [R-CNN](https://blog.csdn.net/weixin_41665360/article/details/86496880)
    • [3] [Fast R-CNN](https://blog.csdn.net/weixin_41665360/article/details/86597436#Referenceshttpsblogcsdnnetweixin_41665360articledetails86555723_187)
    • [4] [Faster R-CNN](https://blog.csdn.net/weixin_41665360/article/details/88099843#References_168)
    • 待续。。。

[1] OverFeat

[1] J. Carreira, F. Li, and C. Sminchisescu. Object recognition by sequential figure-ground ranking. International journal of computer vision, 98(3):243–262, 2012.
[2] J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation, release 1. http://sminchisescu.ins.uni-bonn.de/code/cpmc/.
[3] D. C. Ciresan, J. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CVPR, 2012.
[4] M. Delakis and C. Garcia. Text detection with convolutional neural networks. In International Conference on Computer Vision Theory and Applications (VISAPP 2008), 2008.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
[6] I. Endres and D. Hoiem. Category independent object proposals. In Computer Vision–ECCV 2010, pages 575–588. Springer, 2010.
[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013. in press.
[8] C. Garcia and M. Delakis. Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.
[9] A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and J. Schmidhuber. Fast image scanning with deep max-pooling convolutional neural networks. In International Conference on Image Processing (ICIP), 2013.
[10] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu, U. Muller, and Y. LeCun. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics, 26(2):120–144, February 2009.
[11] G. Hinton, N. Srivastave, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
[12] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In Artificial Neural Networks and Machine Learning–ICANN 2011, pages 44–51. Springer Berlin Heidelberg, 2011.
[13] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Supervised learning of image restoration with convolutional networks. In ICCV’07.
[14] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV’09). IEEE, 2009.
[15] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Handwritten digit recognition with a back-propagation network. In D. Touretzky, editor, Advances in Neural Information Processing Systems (NIPS 1989), volume 2, Denver, CO, 1990. Morgan Kaufman.
[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.
[18] Y. LeCun, F.-J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of CVPR’04. IEEE Press, 2004.
[19] S. Manen, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prims algorithm. In International Conference on Computer Vision (ICCV), 2013.
[20] O. Matan, J. Bromley, C. Burges, J. Denker, L. Jackel, Y. LeCun, E. Pednault, W. Satterfield, C. Stenard, and T. Thompson. Reading handwritten digits: A zip code recognition system. IEEE Computer, 25(7):59– 63, July 1992.
[21] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. Barbano. Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 14(9):1360–1371, September 2005. Special issue on Molecular and Cellular Bioimaging.
[22] S. Nowlan and J. Platt. A convolutional neural network hand tracker. pages 901–908, San Mateo, CA, 1995. Morgan Kaufmann.
[23] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and pose estimation with energy-based models. Journal of Machine Learning Research, 8:1197–1215, May 2007.
[24] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers digit classification. In International Conference on Pattern Recognition (ICPR 2012), 2012.
[25] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multistage feature learning. In Proc. International Conference on Computer Vision and Pattern Recognition (CVPR’13). IEEE, June 2013.
[26] P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional networks. In Proceedings of International Joint Conference on Neural Networks (IJCNN’11), 2011.
[27] G. Taylor, R. Fergus, G. Williams, I. Spiro, and C. Bregler. Pose-sensitive embedding by nonlinear nca regression. In NIPS, 2011.
[28] G. Taylor, I. Spiro, C. Bregler, and R. Fergus. Learning invarance through imitation. In CVPR, 2011.
[29] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Selective search for object recognition. International Journal of Computer Vision, 104(2):154–171, 2013.
[30] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach for the localisation of objects in images. IEE Proc on Vision, Image, and Signal Processing, 141(4):245–250, August 1994.

[2] R-CNN

[1] B.Alexe,T.Deselaers,andV.Ferrari. Measuringtheobjectness of image windows. TPAMI, 2012. 2
[2] P. Arbel´aez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik. Semantic segmentation using regions and parts. In CVPR, 2012. 10, 11
[3] P. Arbel´aez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014. 3
[4] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, 2012. 4, 10, 11, 13, 14
[5] J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPAMI, 2012. 2, 3
[6] D. Cires¸an, A. Giusti, L. Gambardella, and J. Schmidhuber. Mitosisdetectioninbreastcancerhistologyimageswith deep neural networks. In MICCAI, 2013. 3
[7] N.DalalandB.Triggs. Histogramsoforientedgradientsfor human detection. In CVPR, 2005. 1
[8] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and J. Yagnik. Fast, accurate detection of 100,000 object classes on a single machine. In CVPR, 2013. 3
[9] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. FeiFei. ImageNet Large Scale Visual Recognition Competition 2012 (ILSVRC2012). http://www.image-net.org/ challenges/LSVRC/2012/. 1
[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009. 1
[11] J. Deng, O. Russakovsky, J. Krause, M. Bernstein, A. C. Berg, and L. Fei-Fei. Scalable multi-label annotation. In CHI, 2014. 8
[12] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. InICML, 2014. 2
[13] M. Douze, H. J´egou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Evaluation of gist descriptors for web-scale imagesearch. InProc.oftheACMInternationalConferenceon Image and Video Retrieval, 2009. 13
[14] I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010. 3
[15] M.Everingham,L.VanGool,C.K.I.Williams,J.Winn,and A. Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV, 2010. 1, 4
[16] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI, 2013. 10
[17] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010. 2, 4, 7, 12
[18] S.Fidler,R.Mottaghi,A.Yuille,andR.Urtasun. Bottom-up segmentation for top-down detection. In CVPR, 2013. 4, 5
[19] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980. 1
[20] R. Girshick, P. Felzenszwalb, and D. McAllester. Discriminatively trained deformable part models, release 5. http: //www.cs.berkeley.edu/˜rbg/latent-v5/. 2, 5, 6, 7
[21] C. Gu, J. J. Lim, P. Arbel´aez, and J. Malik. Recognition using regions. In CVPR, 2009. 2
[22] B.Hariharan,P.Arbel´aez,L.Bourdev,S.Maji,andJ.Malik. Semantic contours from inverse detectors. In ICCV, 2011. 10
[23] D.Hoiem,Y.Chodpathumwan,andQ.Dai.Diagnosingerror in object detectors. In ECCV. 2012. 2, 7, 8
[24] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. http://caffe. berkeleyvision.org/, 2013. 3
[25] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classificationwithdeepconvolutionalneuralnetworks. InNIPS, 2012. 1, 3, 4, 7
[26] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comp., 1989. 1
[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbasedlearningappliedtodocumentrecognition. Proc.ofthe IEEE, 1998. 1
[28] J. J. Lim, C. L. Zitnick, and P. Doll´ar. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013. 6, 7
[29] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 1
[30] A. Oliva and A. Torralba. Modeling the shape of the scene:
A holistic representation of the spatial envelope. IJCV,2001. 13
[31] X. Ren and D. Ramanan. Histograms of sparse codes for object detection. In CVPR, 2013. 6, 7
[32] H. A. Rowley, S. Baluja, and T. Kanade. Neural networkbased face detection. TPAMI, 1998. 2
[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. Parallel Distributed Processing, 1:318–362, 1986. 1
[34] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. In ICLR, 2014. 1, 2, 4, 10
[35] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013. 2
[36] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual object detection. In AAAI Technical Report, 4th Human Computation Workshop, 2012. 8
[37] K. Sung and T. Poggio. Example-based learning for viewbased human face detection. Technical Report A.I. Memo No. 1521, Massachussets Institute of Technology, 1994. 4
[38] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013. 2
[39] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. 1, 2, 3, 4, 5, 9
[40] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach forthelocalisationofobjectsinimages. IEEProconVision, Image, and Signal Processing, 1994. 2
[41] X.Wang,M.Yang, S.Zhu,and Y.Lin. Regionlets for generic object detection. In ICCV, 2013. 3, 5 [42] M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In CVPR, 2011. 4 [43] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint, arXiv:1409.1556, 2014. 6, 7, 14

[3] Fast R-CNN

[1] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, 2012. 5
[2] R. Caruana. Multitask learning. Machine learning, 28(1), 1997. 6
[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014. 5
[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009. 2
[5] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploitinglinearstructurewithinconvolutionalnetworksfor efficient evaluation. In NIPS, 2014. 4
[6] D.Erhan,C.Szegedy,A.Toshev,andD.Anguelov. Scalable objectdetectionusingdeepneuralnetworks. InCVPR,2014. 3
[7] M.Everingham,L.VanGool,C.K.I.Williams,J.Winn,and A. Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV, 2010. 1
[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010. 3, 7, 8
[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 3, 4, 8
[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Regionbased convolutional networks for accurate object detection and segmentation. TPAMI, 2015. 5, 7, 8
[11] K.He,X.Zhang,S.Ren,andJ.Sun. Spatialpyramidpooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 2, 3, 4, 5, 6, 7
[12] J. H. Hosang, R. Benenson, P. Doll´ar, and B. Schiele. What makes for effective detection proposals? arXiv preprint arXiv:1502.05082, 2015. 8
[13] Y.Jia,E.Shelhamer,J.Donahue,S.Karayev,J.Long,R.Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecturefor fast feature embedding. In Proc. of the ACM International Conf. on Multimedia, 2014. 2
[14] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classificationwithdeepconvolutionalneuralnetworks. InNIPS, 2012. 1, 4, 6
[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1
[16] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comp., 1989. 1
[17] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR, 2014. 5
[18] T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick. Microsoft COCO: common objects in context. arXiv e-prints, arXiv:1405.0312 [cs.CV], 2014. 8
[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. In ICLR, 2014. 1, 3
[20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 1, 5
[21] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013. 8
[22] P.ViolaandM.Jones.Rapidobjectdetectionusingaboosted cascade of simple features. In CVPR, 2001. 8
[23] J. Xue, J. Li, and Y. Gong. Restructuring of deep neural networkacousticmodelswithsingularvaluedecomposition. In Interspeech, 2013. 4
[24] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we need more training data or better models for object detection? In BMVC, 2012. 7
[25] Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segDeepM: Exploiting segmentation and context in deep neural networks for object detection. In CVPR, 2015. 1, 5

[4] Faster R-CNN

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” in European Conference on Computer Vision (ECCV), 2014.
[2] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer Vision (ICCV), 2015.
[3] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations (ICLR), 2015.
[4] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” International Journal of Computer Vision (IJCV), 2013.
[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[6] C. L. Zitnick and P. Doll´ar, “Edge boxes: Locating object proposals from edges,” in European Conference on Computer Vision (ECCV), 2014.
[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained partbased models,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2010.
[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Integrated recognition, localization and detection using convolutional networks,” in International Conference on Learning Representations (ICLR), 2014.
[10] S.Ren,K.He,R.Girshick,andJ.Sun,“FasterR-CNN:Towards real-time object detection with region proposal networks,” in Neural Information Processing Systems (NIPS), 2015.
[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results,” 2007.
[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in European Conference on Computer Vision (ECCV), 2014.
[13] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object detection in rgb-d images,” arXiv:1511.02300, 2015.
[14] J. Zhu, X. Chen, and A. L. Yuille, “DeePM: A deep part-based model for object detection and semantic part localization,” arXiv:1511.07131, 2015.
[15] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network cascades,” arXiv:1512.04412, 2015.
[16] J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional localization networks for dense captioning,” arXiv:1511.07571, 2015.
[17] D. Kislyuk, Y. Liu, D. Liu, E. Tzeng, and Y. Jing, “Human curation and convnets: Powering item-to-item recommendations on pinterest,” arXiv:1511.04003, 2015.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv:1512.03385, 2015.
[19] J. Hosang, R. Benenson, and B. Schiele, “How good are detection proposals, really?” in British Machine Vision Conference (BMVC), 2014.
[20] J. Hosang, R. Benenson, P. Doll´ar, and B. Schiele, “What makes for effective detection proposals?” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2015.
[21] N. Chavali, H. Agrawal, A. Mahendru, and D. Batra, “Object-Proposal Evaluation Protocol is ’Gameable’,” arXiv: 1505.05836, 2015.
[22] J. Carreira and C. Sminchisescu, “CPMC: Automatic object segmentation using constrained parametric min-cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2012.
[23] P.Arbel´aez,J.Pont-Tuset,J.T.Barron,F.Marques,andJ.Malik, “Multiscale combinatorial grouping,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[24] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2012.
[25] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Neural Information Processing Systems (NIPS), 2013.
[26] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
[27] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov, “Scalable, high-quality object detection,” arXiv:1412.1441 (v1), 2015.
[28] P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning to segment object candidates,” in Neural Information Processing Systems (NIPS), 2015.
[29] J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object and stuff segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[30] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object detection networks on convolutional feature maps,” arXiv:1504.06066, 2015.
[31] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models for speech recognition,” in Neural Information Processing Systems (NIPS), 2015.
[32] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural networks,” in European Conference on Computer Vision (ECCV), 2014.
[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in International Conference on Machine Learning (ICML), 2010.
[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computation, 1989.
[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” in International Journal of Computer Vision (IJCV), 2015.
[37] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Neural Information Processing Systems (NIPS), 2012.
[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architectureforfastfeatureembedding,”arXiv:1408.5093,2014.
[39] K. Lenc and A. Vedaldi, “R-CNN minus R,” in British Machine Vision Conference (BMVC), 2015.

待续。。。

你可能感兴趣的:(论文管理)