核心内容来自博客链接1博客连接2希望大家多多支持作者
本文记录用,防止遗忘
在介绍softmax回归的实现前我们先引入一个多类图像分类数据集。它将在后面的章节中被多次使用,以方便我们观察比较算法之间在模型精度和计算效率上的区别。图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2](这个数据集也比较小,只有几十M,没有GPU的电脑也能吃得消)。
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
d2l.use_svg_display()
torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
torchvision.utils: 其他的一些有用的方法。;
我们可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。
下面,我们通过torchvision
的torchvision.datasets
来下载这个数据集。第一次调用时会自动从网上获取数据。我们通过参数train
来指定获取训练数据集或测试数据集(testing data set)。测试数据集也叫测试集(testing set),只用来评价模型的表现,并不用来训练模型。
另外我们还指定了参数transform = transforms.ToTensor()
使所有数据转换为Tensor
,如果不进行转换则返回的是PIL图片。transforms.ToTensor()
将尺寸为 (H x W x C) 且数据位于[0, 255]的PIL图片或者数据类型为np.uint8
的NumPy数组转换为尺寸为(C x H x W)且数据类型为torch.float32
且位于[0.0, 1.0]的Tensor
。
注意: 由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括
transforms.ToTensor()
在内的一些关于图片的函数就默认输入的是uint8型,若不是,可能不会报错但可能得不到想要的结果。所以,**如果用像素值(0-255整数)表示图片数据,那么一律将其类型设置成uint8,避免不必要的bug。
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
或者
mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())
上面的mnist_train
和mnist_test
都是torch.utils.data.Dataset
的子类,所以我们可以用len()
来获取该数据集的大小,还可以用下标来获取具体的一个样本。训练集中和测试集中的每个类别的图像数分别为6,000和1,000。因为有10个类别,所以训练集和测试集的样本数分别为60,000和10,000。
Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。
print(type(mnist_train))
print(len(mnist_train), len(mnist_test))
输出:
<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000
len(mnist_train), len(mnist_test)
输出:(60000, 10000)
每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。 为了简洁起见,本书将高度h像素、宽度w像素图像的形状记为h×w或(h,w)。
我们可以通过下标来访问任意一个样本:
feature, label = mnist_train[0]
print(feature.shape, label) # Channel x Height x Width
输出:torch.Size([1, 28, 28]) tensor(9)
变量feature对应高和宽均为28像素的图像。由于我们使用了transforms.ToTensor(),所以每个像素的数值为[0.0, 1.0]的32位浮点数。需要注意的是,feature的尺寸是 (C x H x W) 的,而不是 (H x W x C)。第一维是通道数,因为数据集中是灰度图像,所以通道数为1。后面两维分别是图像的高和宽。
mnist_train[0][0].shape
输出:torch.Size([1, 28, 28])
Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。 以下函数用于在数字标签索引及其文本名称之间进行转换。
def get_fashion_mnist_labels(labels): #@save
"""返回Fashion-MNIST数据集的文本标签"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
# 我们现在可以创建一个函数来可视化这些样本。
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
另一个可视化函数
# 本函数已保存在d2lzh包中方便以后使用
def show_fashion_mnist(images, labels):
d2l.use_svg_display()
# 这里的_表示我们忽略(不使用)的变量
_, figs = plt.subplots(1, len(images), figsize=(12, 12))
for f, img, lbl in zip(figs, images, labels):
f.imshow(img.view((28, 28)).numpy())
f.set_title(lbl)
f.axes.get_xaxis().set_visible(False)
f.axes.get_yaxis().set_visible(False)
plt.show()
以下是训练数据集中前几个样本的图像及其相应的标签。
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
X, y = [], []
for i in range(10):
X.append(mnist_train[i][0])
y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))
为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从零开始创建。 回顾一下,在每次迭代中,数据加载器每次都会读取一小批量数据,大小为batch_size。 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量。
我们将在训练数据集上训练模型,并将训练好的模型在测试数据集上评价模型的表现。前面说过,mnist_train
是torch.utils.data.Dataset
的子类,所以我们可以将其传入torch.utils.data.DataLoader
来创建一个读取小批量数据样本的DataLoader
实例。
在实践中,数据读取经常是训练的性能瓶颈,特别当模型较简单或者计算硬件性能较高时。PyTorch的DataLoader
中一个很方便的功能是允许使用多进程来加速数据读取。这里我们通过参数num_workers
来设置4个进程读取数据。
batch_size = 256
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据"""
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers())
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=get_dataloader_workers())
我们看一下读取训练数据所需的时间。
timer = d2l.Timer()
for X, y in train_iter:
continue
f'{timer.stop():.2f} sec'
现在我们定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。 这个函数返回训练集和验证集的数据迭代器。 此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。
def load_data_fashion_mnist(batch_size, resize=None): #@save
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
下面,我们通过指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能。
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
print(X.shape, X.dtype, y.shape, y.dtype)
break
输出:
torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64