pip install lightgbm
gitup网址:https://github.com/Microsoft/LightGBM
http://lightgbm.apachecn.org/cn/latest/index.html
xgboost的出现,让数据民工们告别了传统的机器学习算法们:RF、GBM、SVM、LASSO……..。现在微软推出了一个新的boosting框架,想要挑战xgboost的江湖地位。
顾名思义,lightGBM包含两个关键点:light即轻量级,GBM 梯度提升机。
LightGBM 是一个梯度 boosting 框架,使用基于学习算法的决策树。它可以说是分布式的,高效的,有以下优势:
更快的训练效率
低内存使用
更高的准确率
支持并行化学习
可处理大规模数据
如果你觉得这篇文章看起来稍微还有些吃力,或者想要系统地学习人工智能,那么推荐你去看床长人工智能教程。非常棒的大神之作,教程不仅通俗易懂,而且很风趣幽默。点击这里可以查看教程。
其缺点,或者说不足之处:
每轮迭代时,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。
预排序方法(pre-sorted):首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如排序后的索引,为了后续快速的计算分割点),这里需要消耗训练数据两倍的内存。其次时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。
对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。
以上与其说是xgboost的不足,倒不如说是lightGBM作者们构建新算法时着重瞄准的点。解决了什么问题,那么原来模型没解决就成了原模型的缺点。
概括来说,lightGBM主要有以下特点:
基于Histogram的决策树算法
带深度限制的Leaf-wise的叶子生长策略
直方图做差加速
直接支持类别特征(Categorical Feature)
Cache命中率优化
基于直方图的稀疏特征优化
多线程优化
前2个特点使我们尤为关注的。
Histogram算法
直方图算法的基本思想:先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。遍历数据时,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。
带深度限制的Leaf-wise的叶子生长策略
Level-wise过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上Level-wise是一种低效算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
Leaf-wise则是一种更为高效的策略:每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。
Leaf-wise的缺点:可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制,在保证高效率的同时防止过拟合。
决策树算法
XGBoost使用的是pre-sorted算法,能够更精确的找到数据分隔点;
优缺点:
这种pre-sorting算法能够准确找到分裂点,但是在空间和时间上有很大的开销。
LightGBM使用的是histogram算法,占用的内存更低,数据分隔的复杂度更低。
其思想是将连续的浮点特征离散成k个离散值,并构造宽度为k的Histogram。然后遍历训练数据,统计每个离散值在直方图中的累计统计量。在进行特征选择时,只需要根据直方图的离散值,遍历寻找最优的分割点。
Histogram 算法的优缺点:
O(#data * #features)
降到O(k * #features)
。由于离散化,#bin
远小于#data
,因此时间上有很大的提升。决策树生长策略
XGBoost采用的是按层生长level(depth)-wise生长策略,如Figure 1所示,能够同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合;但不加区分的对待同一层的叶子,带来了很多没必要的开销。因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。
LightGBM采用leaf-wise生长策略,如Figure 2所示,每次从当前所有叶子中找到分裂增益最大(一般也是数据量最大)的一个叶子,然后分裂,如此循环。因此同Level-wise相比,在分裂次数相同的情况下,Leaf-wise可以降低更多的误差,得到更好的精度。Leaf-wise的缺点是可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。
网络通信优化
XGBoost由于采用pre-sorted算法,通信代价非常大,所以在并行的时候也是采用histogram算法;LightGBM采用的histogram算法通信代价小,通过使用集合通信算法,能够实现并行计算的线性加速。
LightGBM支持类别特征
实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,转化one-hotting特征,降低了空间和时间的效率。而类别特征的使用是在实践中很常用的。基于这个考虑,LightGBM优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1展开。并在决策树算法上增加了类别特征的决策规则。
所有的参数含义,参考:http://lightgbm.apachecn.org/cn/latest/Parameters.html
调参过程:
(1)num_leaves
LightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。
大致换算关系:num_leaves = 2^(max_depth)
(2)样本分布非平衡数据集:可以param[‘is_unbalance’]=’true’
(3)Bagging参数:bagging_fraction+bagging_freq(必须同时设置)、feature_fraction
(4)min_data_in_leaf、min_sum_hessian_in_leaf
这里主要以sklearn的使用形式来使用lightgbm算法,包含建模,训练,预测,网格参数优化。
import lightgbm as lgbimport pandas as pdfrom sklearn.metrics import mean_squared_errorfrom sklearn.model_selection import GridSearchCVfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_classification# 加载数据print('Load data...')iris = load_iris()data=iris.datatarget = iris.targetX_train,X_test,y_train,y_test =train_test_split(data,target,test_size=0.2)# df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t')# df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t')# y_train = df_train[0].values# y_test = df_test[0].values# X_train = df_train.drop(0, axis=1).values# X_test = df_test.drop(0, axis=1).valuesprint('Start training...')# 创建模型,训练模型gbm = lgb.LGBMRegressor(objective='regression',num_leaves=31,learning_rate=0.05,n_estimators=20)gbm.fit(X_train, y_train,eval_set=[(X_test, y_test)],eval_metric='l1',early_stopping_rounds=5)print('Start predicting...')# 测试机预测y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)# 模型评估print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5)# feature importancesprint('Feature importances:', list(gbm.feature_importances_))# 网格搜索,参数优化estimator = lgb.LGBMRegressor(num_leaves=31)param_grid = { 'learning_rate': [0.01, 0.1, 1], 'n_estimators': [20, 40]}gbm = GridSearchCV(estimator, param_grid)gbm.fit(X_train, y_train)print('Best parameters found by grid search are:', gbm.best_params_)
# coding: utf-8# pylint: disable = invalid-name, C0111import jsonimport lightgbm as lgbimport pandas as pdfrom sklearn.metrics import mean_squared_errorfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import make_classificationiris = load_iris()data=iris.datatarget = iris.targetX_train,X_test,y_train,y_test =train_test_split(data,target,test_size=0.2)# 加载你的数据# print('Load data...')# df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t')# df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t')## y_train = df_train[0].values# y_test = df_test[0].values# X_train = df_train.drop(0, axis=1).values# X_test = df_test.drop(0, axis=1).values# 创建成lgb特征的数据集格式lgb_train = lgb.Dataset(X_train, y_train)lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)# 将参数写成字典下形式params = { 'task': 'train', 'boosting_type': 'gbdt', # 设置提升类型 'objective': 'regression', # 目标函数 'metric': {'l2', 'auc'}, # 评估函数 'num_leaves': 31, # 叶子节点数 'learning_rate': 0.05, # 学习速率 'feature_fraction': 0.9, # 建树的特征选择比例 'bagging_fraction': 0.8, # 建树的样本采样比例 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging 'verbose': 1 # <0 显示致命的, =0 显示错误 (警告), >0 显示信息}print('Start training...')# 训练 cv and traingbm = lgb.train(params,lgb_train,num_boost_round=20,valid_sets=lgb_eval,early_stopping_rounds=5)print('Save model...')# 保存模型到文件gbm.save_model('model.txt')print('Start predicting...')# 预测数据集y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)# 评估模型print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5)