小波神经网络的基本原理,小波神经网络什么意思

小波神经网络的优势是什么?谢谢

小波神经网络相比于前向的神经网络,它有明显的优点:首先小波神经网络的基元和整个结构是依据小波分析理论确定的,可以避免BP神经网络等结构设计上的盲目性;其次小波神经网络有更强的学习能力,精度更高。

总的而言,对同样的学习任务,小波神经网络结构更简单,收敛速度更快,精度更高。

谷歌人工智能写作项目:神经网络伪原创

神经网络以及小波分析法在汽车发动机故障检修中有什么应用?

汽车是我们生活中常用的将交通工具,那么神经网络和小波分析法在汽车发动机故障检修中有什么应用呢?大家请看我接下来详细地讲解好文案。一,小波分析在故障检修中的应用小波包分解与故障特征提取。

缸盖表面的振动信号由一系列瞬态响应信号组成,分别代表气缸的振动源响应信号:1为气缸的燃烧激励响应;2是排气阀打开时的节流阀冲击。

气门间隙异常时,振动信号的能量大于目前冲击力作用时,振动信号的主要组件目前离冲击力稳定的振动信号和噪声,信号能量相对较小。

因此,可以利用每个频带的能量变化来提取故障特征,通过小波包分解系数{4]得到频带的能量。二,神经网络在故障检修中的作用神经网络与故障识别的基本原理。

人工神经网络以其大规模并行处理、分布式存储、自组织、自适应和自学习的能力,以及适合于处理不准确或模糊的信息而备受关注5]。其中,最成熟的是BP神经网络。值,直到输出接近理想输出信号6。

因此,BP神经网络可以以任意精度逼近任意有限维函数,适用于模式识别。现在对每个工况信号取5个样本,按照⒉部分所述步骤对35组样本信号进行编程,提取样本信号的能量特征向量。

三,小波分析法和神经网络应用总结为了实现柴油机气门机构的非解体故障诊断,本文将对测量的气缸盖振动信号进行小波阈值降噪预处理。然后根据信号的频率特性,对信号进行时频分析后进行小波包分解。

所构造的能量特征向量准确地反映了气门间隙状态下缸盖振动信号能量的变化。

实验表明,利用能量特征向量,BP神经网络能更准确地完成从振动信号空间到气门间隙状态空间的非线性映射,能更好地满足柴油机状态检测和故障诊断的要求。

人工神经网络的发展趋势

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。

其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。

由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。

目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。下面主要就神经网络与小波分析、混沌、粗集理论、分形理论的融合进行分析。

与小波分析的结合1981年,法国地质学家Morlet在寻求地质数据时,通过对Fourier变换与加窗Fourier变换的异同、特点及函数构造进行创造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。

1986年以来由于YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速发展成为一门新兴学科。

Meyer所著的小波与算子,Daubechies所著的小波十讲是小波研究领域最权威的著作。小波变换是对Fourier分析方法的突破。

它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

小波分析相当于一个数学显微镜,具有放大、缩小和平移功能,通过检查不同放大倍数下的变化来研究信号的动态特性。因此,小波分析已成为地球物理、信号处理、图像处理、理论物理等诸多领域的强有力工具。

小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。

在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。

小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。

小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。

另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。混沌神经网络混沌第一个定义是上世纪70年代才被Li-Yorke第一次提出的。

由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。

混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。

混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。

1990年Kaihara、T.Takabe和M.Toyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。

与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。

当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。

混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程)一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。

混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对复杂的模式识别、图像处理等工程应用发挥重要作用。

混沌神经网络受到关注的另一个原因是混沌存在于生物体真实神经元及神经网络中,并且起到一定的作用,动物学的电生理实验已证实了这一点。

混沌神经网络由于其复杂的动力学特性,在动态联想记忆、系统优化、信息处理、人工智能等领域受到人们极大的关注。

针对混沌神经网络具有联想记忆功能,但其搜索过程不稳定,提出了一种控制方法可以对混沌神经网络中的混沌现象进行控制。研究了混沌神经网络在组合优化问题中的应用。

为了更好的应用混沌神经网络的动力学特性,并对其存在的混沌现象进行有效的控制,仍需要对混沌神经网络的结构进行进一步的改进和调整,以及混沌神经网络算法的进一步研究。

基于粗集理论粗糙集(RoughSets)理论是1982年由波兰华沙理工大学教授Z.Pawlak首先提出,它是一个分析数据的数学理论,研究不完整数据、不精确知识的表达、学习、归纳等方法。

粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,其主要思想就是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。

目前,粗糙集理论已被成功应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域。

粗集和神经网络的共同点是都能在自然环境下很好的工作,但是,粗集理论方法模拟人类的抽象逻辑思维,而神经网络方法模拟形象直觉思维,因而二者又具有不同特点。

粗集理论方法以各种更接近人们对事物的描述方式的定性、定量或者混合性信息为输入,输入空间与输出空间的映射关系是通过简单的决策表简化得到的,它考虑知识表达中不同属性的重要性确定哪些知识是冗余的,哪些知识是有用的,神经网络则是利用非线性映射的思想和并行处理的方法,用神经网络本身结构表达输入与输出关联知识的隐函数编码。

在粗集理论方法和神经网络方法处理信息中,两者存在很大的两个区别:其一是神经网络处理信息一般不能将输入信息空间维数简化,当输入信息空间维数较大时,网络不仅结构复杂,而且训练时间也很长;而粗集方法却能通过发现数据间的关系,不仅可以去掉冗余输入信息,而且可以简化输入信息的表达空间维数。

其二是粗集方法在实际问题的处理中对噪声较敏感,因而用无噪声的训练样本学习推理的结果在有噪声的环境中应用效果不佳。而神经网络方法有较好的抑制噪声干扰的能力。

因此将两者结合起来,用粗集方法先对信息进行预处理,即把粗集网络作为前置系统,再根据粗集方法预处理后的信息结构,构成神经网络信息处理系统。

通过二者的结合,不但可减少信息表达的属性数量,减小神经网络构成系统的复杂性,而且具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条强有力的途径。

目前粗集与神经网络的结合已应用于语音识别、专家系统、数据挖掘、故障诊断等领域,将神经网络和粗集用于声源位置的自动识别,将神经网络和粗集用于专家系统的知识获取中,取得比传统专家系统更好的效果,其中粗集进行不确定和不精确数据的处理,神经网络进行分类工作。

虽然粗集与神经网络的结合已应用于许多领域的研究,为使这一方法发挥更大的作用还需考虑如下问题:模拟人类抽象逻辑思维的粗集理论方法和模拟形象直觉思维的神经网络方法更加有效的结合;二者集成的软件和硬件平台的开发,提高其实用性。

与分形理论的结合自从美国哈佛大学数学系教授BenoitB.Mandelbrot于20世纪70年代中期引入分形这一概念,分形几何学(Fractalgeometry)已经发展成为科学的方法论--分形理论,且被誉为开创了20世纪数学重要阶段。

现已被广泛应用于自然科学和社会科学的几乎所有领域,成为现今国际上许多学科的前沿研究课题之一。由于在许多学科中的迅速发展,分形已成为一门描述自然界中许多不规则事物的规律性的学科。

它已被广泛应用在生物学、地球地理学、天文学、计算机图形学等各个领域。

用分形理论来解释自然界中那些不规则、不稳定和具有高度复杂结构的现象,可以收到显著的效果,而将神经网络与分形理论相结合,充分利用神经网络非线性映射、计算能力、自适应等优点,可以取得更好的效果。

分形神经网络的应用领域有图像识别、图像编码、图像压缩,以及机械设备系统的故障诊断等。

分形图像压缩/解压缩方法有着高压缩率和低遗失率的优点,但运算能力不强,由于神经网络具有并行运算的特点,将神经网络用于分形图像压缩/解压缩中,提高了原有方法的运算能力。

将神经网络与分形相结合用于果实形状的识别,首先利用分形得到几种水果轮廓数据的不规则性,然后利用3层神经网络对这些数据进行辨识,继而对其不规则性进行评价。

分形神经网络已取得了许多应用,但仍有些问题值得进一步研究:分形维数的物理意义;分形的计算机仿真和实际应用研究。随着研究的不断深入,分形神经网络必将得到不断的完善,并取得更好的应用效果。?。

小波神经网络比一般神经网络的优势是什么?

关于小波神经网络的平移因子和伸缩因子

平移因子b和伸缩因子a都是通过训练得到的,确定变化量的方法依然是误差反传算法。可参考附件中的《30个案例》的第23个案例——基于小波神经网络的短时交通流量时间序列预测。

小波神经网络相比于前向的神经网络,它有明显的优点:首先小波神经网络的基元和整个结构是依据小波分析理论确定的,可以避免BP神经网络等结构设计上的盲目性;其次小波神经网络有更强的学习能力,精度更高。

总的而言,对同样的学习任务,小波神经网络结构更简单,收敛速度更快,精度更高。

神经网络主要用于什么问题的求解?

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:1、神经网络的软件模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。

随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。?fr=ala0_1。

小波分析与神经网络的结合就是小波网络吗

将小波分析与神经网络的结合是小波神经网络,有两种结合方式,即辅助式结合和嵌套式结合。辅助式结合是将小波分析作为神经网络的前置预处理手段,为神经网络提供输入特征向量,然后再用传统的神经网络进行处理。

嵌套式结合使用小波函数代替神经网络的隐层函数。

神经网络是什么?

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

小波分析在层序地层划分中的应用

1.小波分析简介20世纪80年代后期至今,一种著名的、在各行各业有重要应用价值的数学理论和方法技术在科学技术界得到了广泛的重视和采用,它就是被誉为“数学显微镜”的小波分析(李世雄,1994)。

小波分析的主要功能和特点是,它具有多分辨分析或多尺度分析功能,可以把信号分解成各种不同的尺度成分;它具有很强的局部分析功能,同时具有时间(或空间)域和频率域的局部分析性质,它可自动地通过伸缩、平移聚焦到信号的任一细节对其加以分析(侯遵泽,1998)(1)小波分析基本原理。

小波(wavelet),即小区域的波,是一种特殊的长度有限、平均值为0的波形。它有两个特点:一是“小”,即在时域都具有紧支集或近似紧支集;二是正负交替的波动性。

如果用小波和构成傅里叶分析基础的正弦波做比较的话,傅里叶分析所用的正弦波在时间上没有限制,从负无穷到正无穷,但小波则倾向于不规则与不对称。

傅里叶分析是把信号分解到一组相互正交的正弦波上的,也就是基函数,我们可以把基函数看成是度量信号某些特征的一把“尺子”,傅里叶分析度量的就是信号的频谱特征,但是如果这把“尺子”过于规则,有时候就不能十分精确地表达信号蕴含的信息,而在小波分析中,“尺子”换成了规则程度更低的小波函数,从而可以更加有效地表达信号中信息的成分。

小波变换对不同频率在时域上的取样步长是调节性的,即在低频时小波变换的时间分辨率较差,而频率分辨率较高;在高频时小波变换的时间分辨率较高,而频率分辨率较低(图2-13),这正符合低频信号变化缓慢而高频信号变化迅速的特点(胡昌华,1999)。

这就构成了利用小波变换进行信号分析的基础。图2-13数字信号的小波变换(2)一维连续小波变换。小波变换实际上是求取信号在各小波函数上的投影值。

每个小波函数均由一个母小波函数经过尺度伸缩与时间平移得来的。信号分析的一般思路就是分解与组合,寻找一组最能代表信号特征的函数形式,将信号用这些量来逼近,或者写成这些量的线性组合的形式。

小波分析的思想来源于伸缩和平移方法:对波形的尺度伸缩就是在时间轴上对信号进行压缩与伸展,而时间平移就是指小波函数在时间轴上的波形平行移动。(3)离散小波变换。

由于连续小波变换的伸缩和平移系数是相互独立的,所以通过伸缩和平移得到的各个小波函数之间有一定的相似性,但由于这两个系数之间的独立,就引入了信息的冗余。

在分辨率一定的情况下,描述了多余的信息,使得反映信号特征的一些参数相互重叠,给我们的分析带来不便,但这些特点可以用在本身就有自相似性的信号上,可以让我们更清楚地看到信号自身的自相似性。

此外,由于冗余信息的存在,也使得小波逆变换的重构过程不唯一,也就是说,由同一母小波生成的不同的小波变换函数可能重构成同一个信号。

为了减少冗余信息,就引入了离散小波变换的概念,其中的伸缩和平移系数是可数的,重构过程用求和的形式给出。如果伸缩和平移系数满足一定的对应关系,则称为二进小波变换(尺度以2的幂的形式给出)。

离散小波变换主要是建立在二进制小波变换的基础上的。测井曲线数据也恰好是离散数据,符合离散变换的要求。

在利用小波分析进行层序地层划分时,主要是对测井曲线进行多尺度分解,得到不同尺度下的小波变换图,利用其表现出来的特征来划分不同级次的层序。

2.利用小波分析进行层序地层划分利用小波分析方法是层序地层划分方法上的一种新的尝试,其目的是尽量减少层序划分过程中的主观因素,依靠地层自身表现出来的客观特征来识别层序、准层序组以及准层序。

在我们研究的沉积岩地层中,沉积物的特征可以反映沉积时水体的特征。

随着沉积水深的变化,沉积物中多种特征都会相应的发生变化,如放射性物质含量、有机质含量或其他微量元素的含量等,这种变化就会在相应的测井曲线上反映出来。

而沉积水深变化受到了多种因素的影响,有长期和短期的旋回,是多个不同周期旋回的叠加,因此测井曲线应该是沉积地层中某种随水深变化的特征的多种频率变化的响应的叠加。

也就是说,测井曲线中包含着沉积水深不同周期变化的信息,是多个沉积水深变化周期相互叠加的响应。

而小波分析能够将信号分解为不同频率不同周期的旋回,因此,小波分析的特点恰好可以和测井曲线的特点相对应,利用小波分析的方法可以比较准确地将测井曲线中相互叠加的反映水深变化的不同周期的信息分别识别出来,识别出的这些信息就可以用来进行沉积旋回的划分。

同时,小波分析方法还可以帮助解决传统研究方法所不能解决的一些难题,如大段单一岩性地层中的沉积旋回识别。

大段单一岩性尤其是大段泥岩、页岩,并不是一个小的沉积旋回里沉积的产物,相反,应是一个相当长时期沉积下来的,但是通过传统的岩性划分方法却很难将其划分开,这就给准层序甚至准层序组的划分造成了困难。

小波分析方法可以较好地解决这一问题,利用这种方法可以从测井曲线的细微变化中识别沉积间断和沉积旋回。(1)测井曲线的选择。不同的曲线具有不同的地质含义,进行相同的变换可能会得到不同的结果。

但在研究中通过对GR、AC、COND、电阻率等多条曲线进行小波变换后对比发现,不同测井曲线所得出的变换结果尽管形态上不完全一样,但在旋回的划分上却比较一致(图2-14)。

图中曲线a是COND测井曲线经过db5小波变换后的结果,曲线b是同一井段AC曲线变换后的结果。

出现这个结果是由于虽然不同的曲线代表着不同的地层响应,会呈现出不同的特征,但地层中各种参数的变化主要受沉积环境的影响,会随着沉积环境的旋回变化呈现出基本一致的旋回特征。

这也从一个方面反映了小波变换在沉积旋回划分中的客观性。因此,可以选择目标井的测量精度较高、质量较好的曲线来进行小波变换,进而进行沉积旋回的划分。

图2-14对COND和AC曲线进行小波变换结果对比(2)小波的选择。

同傅里叶分析不同,小波分析的基(小波函数)不是唯一存在的,所有满足小波条件的函数都可以作为小波函数,那么小波函数的选取就成了十分重要的问题,实际选取小波的标准主要有以下三种。

1)自相似性原则:对二进小波变换(因为在正交小波变换中,取样的方式就是按照小波函数取样的,所以不存在这个问题),如果选择的小波对信号有一定相似性,则变换后的能量就比较集中,可以有效减少计算量。

2)判别函数:针对某类问题,找出一些关键性的技术指标,得到一个判别函数,将各种小波函数代入其中,得到一个最优原则。3)支集长度:大部分应用选支集长度在5~9之间的小波。

因为支集太长会产生边界问题,支集太短不利于信号能量的集中。但在实际应用中,因为大部分信号的信息量太大,很难找到相应的模式,因此主要是依靠经验来选取。

根据前人研究经验及作者对不同函数所做结果的对比,本书采用的是Daubechies小波,阶数为5。

Daubechies小波是由著名小波学者IngridDaubechies所创造,她发明的紧支集正交小波是小波领域的里程碑,使得小波的研究由理论转到可行。这一系列的小波简写成dbN,其中N表示阶数。

(3)工作流程。测井曲线能比较准确地反映井旁地层的电性、物性等特征,但往往会受到测井仪器、钻井泥浆等其他非地层因素的干扰,且不同频率的旋回相互叠加,对正确识别和划分沉积旋回造成一定的影响。

小波分析能真正消除干扰信号,放大真实信息,按不同频率反映出测井曲线中包含的真正旋回特征,以此划分不同级别层序单元,同时还可以在划分高精度沉积旋回的基础上,与Fischer图解相结合划分出体系域。

MATLAB软件的小波分析工具箱是一种比较常用的工具。MATLAB是Mathworks公司于1982年推出的一套高性能的数值计算和可视化软件。

MATLAB的推出得到了广大专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础。各个领域的专家学者相继推出了MATLAB工具箱,包括信号处理、神经网络、图像处理、小波分析等。

其中小波分析工具箱可以满足对测井曲线进行小波变换的需要。

图2-15小波分析流程图在对测井曲线进行小波变换时,首先需要对所研究层段的顶底界面进行准确的标定,然后将需要变换的该深度段的测井曲线数值建立单独的文本文件作为原始文件。

将原始文件导入后保存成.m格式的信号文件。

选择MATLAB软件的wavelet(小波分析)工具箱进行离散一维小波变换,小波类型选择db,阶数为5,最大级数定为12,将上述参数选好后进行分析,即可得到一组12条不同级次的db5小波变换曲线(图2-15)。

此外对其进行连续一维小波变换,可以得到小波的频谱分析图,选择合适的最大显示值,根据频谱图上图形的闭合方向可以区分出层序的界面和层序单元(图2-6,图2-7)。(4)单井分析实例。

牛100井位于牛庄洼陷西部,地层以砂泥岩互层为主,岩性变化较快(图2-16)。

利用小波分析方法对AC、R25两条测井曲线进行了一维连续小波变换,分别得到其小波变换谱系图,对AC曲线进行了一维离散变换,得到不同阶数的小波,根据与地震、测井及录井岩性资料的对比,选用d11,d9,d7三个层的小波变换曲线分别进行层序、准层序组和准层序的划分。

将传统划分方法所得的结果与小波分析方法所得结果进行对比可以比较明显的看出,在层序和准层序组的划分上两种方法划分的层序单元基本一致,可以相互验证。

在准层序级别上的划分,小波分析方法的优势就比较明显地体现了出来,划分的旋回数较多,精度也有提高。这也正是小波分析作为“数学显微镜”的特点所决定的。

从图2-16中小波分析得到的d11曲线可以看出,这一段地层可以划分为两个大的旋回,对应两个层序,谱系图上的特征也比较明显。

其中每个大的旋回又可以分为三个次一级的旋回,在d9及谱系图上可以找到相关界面,相当于每个层序划分出三个准层序组,每个准层序组在测井曲线及录井资料上也有较明显的反旋回特征。

在进行准层组的划分时,小波分析方法可以划分出肉眼不易识别的旋回,从而提高了划分精度。整段地层一共可以划分为21个准层序,代表不同的沉积旋回。

其旋回特征在d7曲线上有较好体现,从谱系图上也可以找到各界面的标志。从测井曲线和岩性上看,基本上每一个准层序都是一个反旋回,代表着一期的水体变换,这也完全符合层序地层学的基本原理。

图2-16牛100井小波分析资料的层序地层划分王62井位于牛庄洼陷东部,与牛100井相比,划分出的各层序单元的厚度发生了明显的变化,但数目基本一致,这也证明了小波分析划分层序地层的结果是比较可靠的。

通过对AC曲线的小波变换得到AC曲线的小波变换谱系图和小波变换曲线,如图2-17所示。从谱系图和d11曲线上可以将整段地层划分为两个大的旋回,分别对应层序Ⅲ和层序Ⅳ。

其中每个层序又可以划分为3个准层序组,在d9曲线上可以看到相应的旋回出现,谱系图上可以找到界面的标志(图2-17)。王62井这一段地层一共可以划分成20个准层序,缺失第一个准层序。

各准层序在岩石类型、颜色和测井曲线上基本上可以看出反旋回特征,符合层序地层划分方法。

通过牛100井、王62井的划分可以看出,小波分析方法在砂泥岩互层的地层中有较好的应用效果,可以提高层序划分的精度和准确性。

在层序划分中有比较好的可重复性,使得全区的划分结果比较客观和统一,减少了人为因素造成的干扰。

 

你可能感兴趣的:(神经网络,深度学习,人工智能)