《动手学深度学习》第一次打卡

线性回归

线性回归的基本要素

线性回归基本要素包括模型、数据集、损失函数、优化函数。

1、模型

以房价预测为例进行说明。
采用二维变量对房价进行预测,分别是房屋面积、房屋年龄

price=w_area⋅area+w_age⋅age+b

2、数据集

数据集通常通过统计局及各大网站下载真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),一栋房屋被称为一个样本(sample),其真实售出价格叫作标签(label),用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。

3、损失函数

损失函数是反应预测值与真实值之间的误差的函数,本例中使用的是平方差(也可以根据需要运用别的损失函数进行计算)。

loss=1/2*​(yiˊ​−yi)^2

4、优化函数

在求解最优问题时使用的算法称梯度下降,梯度下降有几种变形:批量随机下降(BGD)、随机梯度下降(SGD)、小批量梯度下降(MBGD)。

在深度学习之中,我们往往不是一个数据一个数据的计算,而是同时计算一批(batch)数据,所以实际使用中往往用的是小批量随机梯度下降(mini-batch stochastic gradient descent),单个数据与批量数据的区别只是传入的数据是一个列向量还是多个列向量。

使用pytorch简洁实现

import torch
from torch import nn
import numpy as np
torch.manual_seed(1)

print(torch.__version__)
torch.set_default_tensor_type('torch.FloatTensor')

生成数据集

#生成数据集
num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

读取数据集

import torch.utils.data as Data

batch_size = 10

# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)

# put dataset into DataLoader
data_iter = Data.DataLoader(
    dataset=dataset,            # torch TensorDataset format
    batch_size=batch_size,      # mini batch size
    shuffle=True,               # whether shuffle the data or not
    num_workers=2,              # read data in multithreading
)

for X, y in data_iter:
    print(X, '\n', y)
    break


定义模型

class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()      # call father function to init 
        self.linear = nn.Linear(n_feature, 1)  # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`

    def forward(self, x):
        y = self.linear(x)
        return y
    
net = LinearNet(num_inputs)
print(net)

# ways to init a multilayer network
# method one
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # other layers can be added here
    )

# method two
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# method three
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))

print(net)
print(net[0])


初始化模型参数

from torch.nn import init

init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0)  # or you can use `net[0].bias.data.fill_(0)` to modify it directly

for param in net.parameters():
    print(param)


定义损失函数

loss = nn.MSELoss()    # nn built-in squared loss function
                       # function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`

定义优化函数

import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03)   # built-in random gradient descent function
print(optimizer)  # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`

训练

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))

# result comparision
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)


注:第一天打卡,前期补基础知识占用太多时间,代码仅按已给代码进行运行和理解,本博客仅为学习的简单整理和记录。

你可能感兴趣的:(《动手学深度学习》第一次打卡)