- Python实现观察者模式
麦田里走一夜
PYTHONpython观察者模式开发语言
请关注【来玩AI】公众号体验人工智能来玩AI>>>Python实现观察者模式观察者模式python代码实现说明应用场景观察者模式模式是一种常用的设计模式,可以在对象之间建立一对多的依赖关系。Python中实现观察者模式有多种方式,下面给出一种基于类和装饰器的实现方式:python代码实现classObserver:defupdate(self,observable,*args,**kwargs):
- 深入探讨Ceph:分布式存储架构的未来
深度Linux
ceph分布式架构C/C++
在数字化浪潮汹涌澎湃的当下,数据量呈爆发式增长,传统存储系统在应对海量数据存储、高并发访问以及灵活扩展等方面,逐渐显得力不从心。分布式存储技术应运而生,成为解决现代数据存储难题的关键方案,而Ceph作为分布式存储领域的佼佼者,正日益受到广泛关注和应用。Ceph以其卓越的性能、高可靠性、强大的扩展性以及开源的特性,在众多分布式存储系统中脱颖而出,被广泛应用于云计算、大数据、人工智能等前沿领域。无论是
- 从入门到精通,解锁AI新高度——DeepSeek学习手册
周师姐
学习
资料链接:https://pan.quark.cn/s/c927326f70c5你是否渴望掌握前沿AI技术,却在复杂的理论和实践中迷茫?现在,一本由清华大学出品的《DeepSeek:从入门到精通》学习手册横空出世,为你开启AI新世界的大门。作为人工智能领域的新兴力量,DeepSeek以其卓越的性能和创新的技术,正在重塑我们对AI的认知。这本手册,由清华大学顶尖科研团队精心编写,是DeepSeek技
- 【有啥问啥】深入了解 FlashMLA:Hopper GPU 的高效 MLA 解码内核
有啥问啥
大模型行业调研科普算法语言模型
深入了解FlashMLA:HopperGPU的高效MLA解码内核简介在人工智能(AI)领域,特别是大型语言模型(LLM)领域,对计算效率和速度的需求持续增长。为了应对这些挑战,DeepSeek推出了FlashMLA,这是一种专为NVIDIAHopperGPU架构优化的高效MLA(Multi-LayerAttention)解码内核。FlashMLA旨在加速LLM的解码过程,从而显著提高模型的响应速度
- Exception:data did not match any variant of untagged enum PyPreTokenizerTypeWrapper at line 69 解决方案
爱编程的喵喵
Python基础课程pythontokenizerPyPreTokenizer解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Exception:datadidn
- 一学就会:A*算法详细介绍(Python)
不去幼儿园
人工智能(AI)#启发式算法算法python人工智能机器学习开发语言
本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在启发式算法专栏:【人工智能】-【启发式算法】(6)---《一学就会:A*算法详细介绍(Python)》一学就会:A*算法详细介绍(Python)目录A*算法介绍A*算法的核心概念A*算法的特点A*算法示例:迷宫
- 【LangChain编程:从入门到实践】实现多模态代理
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】实现多模态代理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:LangChain编程,多模态代理,自然语言处理,多媒体数据融合,复杂任务解决能力1.背景介绍1.1大背景与问题的提出随着人工智能技术的飞速发展,尤其是大模型在自然语言处理领域的突破,如通义千问、通义万相、阿里云通义大模型等,我们正迎来一个全
- 222222222222222
智能与优化
开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas是基于Nu
- opencv 自适应阈值
虚假程序设计
opencv人工智能计算机视觉
需要安装扩展库opencv-contrib-pythonCV_class.pyimportcv2importnumpyasnp#importserialimportos,sysfromdatetimeimportdatetimeimport_threadimportthreadingimporttimeimportwin32ui#只有windows能用.#fromCV_classimport*de
- OpenCV开源机器视觉软件
视觉人机器视觉
杂说opencv开源人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、视频分析、物体检测、人脸识别等领域。它由英特尔实验室于1999年发起,现已成为计算机视觉领域最流行的工具之一,支持多种编程语言(如C++、Python、Java)和操作系统(Windows、Linux、macOS、Android、iOS)。核心功能图像处理基
- 向量数据库实战介绍
Zhank10
数据库
本文将介绍三种常用的向量数据库:faiss,Milvus和Qdrant,并给出一个具体的使用例子。向量数据库(VectorDatabase)是一种专门用于存储、管理、查询、检索向量的数据库,主要应用于人工智能、机器学习、数据挖掘等领域。在向量数据库中,数据以向量的形式进行存储和处理,需要将原始的非向量型数据转化为向量表示(比如文本使用Embedding技术获得其表征向量)。这种数据库能够高效地进行
- DeepSeek 持续火爆;微信蓝包首秀;世界级人工智能科学家许主洪加盟阿里巴巴...|网易数智日报
网易数智
网易数智日报人工智能大数据业界资讯ai云计算
DeepSeek持续火爆,多个云平台上线相关模型「抢食」算力需求AI公司DeepSeek旗下大模型DeepSeek-R1「爆火」后,多个云平台宣布上线DeepSeek旗下模型。2月5日,阅文集团宣布,旗下作家辅助创作应用“作家助手”已集成幻方量化旗下AI公司深度求索(DeepSeek)的DeepSeek-R1大模型。这是DeepSeek首次应用于网文领域,旨在为作家提供更智能的创作支持。2月4日,
- A100高效架构深度解析
智能计算研究中心
其他
内容概要NVIDIAA100GPU作为面向人工智能与高性能计算的关键硬件载体,其架构创新标志着计算范式的重要演进。本文通过系统性拆解A100的核心技术模块,重点探讨其在计算密度、互联效率与资源利用率三个维度的突破性设计。在计算架构层面,第三代TensorCore通过引入细粒度结构化稀疏支持与新型数据格式,显著提升矩阵运算效率;多实例GPU(MIG)技术则通过物理级硬件隔离实现单卡多任务并行处理,为
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 人工智能的未来发展趋势及其对社会的深远影响
智能计算研究中心
其他
内容概要在当今科技飞速发展的时代,人工智能(AI)已成为推动社会变革的重要力量。本文将探讨人工智能未来的发展趋势,分析其在各个领域的应用前景,尤其是在技术革新、市场需求及伦理挑战等方面。通过对相关趋势的深入分析,我们可以更好地理解人工智能如何重塑劳动力市场、提升生活质量以及推动社会整体进步。探索人工智能的潜力,为未来的发展奠定基础。随着技术的不断进步,人工智能正在经历一场深刻的变革。从机器学习到深
- BagelDB:AI的开源向量数据库
qahaj
人工智能数据库python
BagelDB:AI的开源向量数据库BagelDB(OpenVectorDatabaseforAI)是一个类似于GitHub的AI数据协作平台。用户可以在这里创建、分享和管理向量数据集。BagelDB支持独立开发者的私有项目、企业内部的协作以及数据DAO的公共贡献。技术背景介绍随着人工智能和机器学习的快速发展,各种数据的重要性也在不断凸显。向量数据库作为存储向量化数据的重要工具,越来越受到开发者和
- 【openCV-89】人脸检测
华东算法王
华东算法王-opencvopencv人工智能计算机视觉
人脸检测简介人脸检测是计算机视觉中的一个重要任务,旨在从图像或视频中识别并定位出人脸的位置。人脸检测不仅是人脸识别、表情分析、面部特征点检测等高级任务的前置步骤,而且在安防监控、智能家居、自动驾驶等多个领域都具有广泛应用。人脸检测的目标人脸检测的目标是从输入的图像或视频流中自动检测出所有人脸的区域,通常用矩形框(boundingbox)表示人脸的位置。人脸检测不仅要识别图像中的人脸,还要在各种条件
- 阿里云 人工智能与机器学习
HaoHao_010
阿里云云服务器云计算服务器
阿里云的人工智能(AI)与机器学习(ML)服务为企业提供了全面的AI解决方案,帮助用户在多个行业实现数据智能化,提升决策效率,推动业务创新。阿里云通过先进的技术和丰富的工具,支持用户开发、部署和管理AI应用。以下是阿里云在人工智能和机器学习方面的主要产品与服务:1.云上机器学习平台—PaaS服务PAI(PlatformforAI)PAI是阿里云推出的人工智能平台,提供一系列机器学习与深度学习工具和
- AI探索笔记:浅谈人工智能算法分类
安意诚Matrix
机器学习笔记人工智能笔记
人工智能算法分类这是一张经典的图片,基本概况了人工智能算法的现状。这张图片通过三个同心圆展示了人工智能、机器学习和深度学习之间的包含关系,其中人工智能是最广泛的范畴,机器学习是其子集,专注于数据驱动的算法改进,而深度学习则是机器学习中利用多层神经网络进行学习的特定方法。但是随着时代的发展,这张图片表达得也不是太全面了。我更喜欢把人工智能算法做如下的分类:传统机器学习算法-线性回归、逻辑回归、支持向
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- AI笔记——浅谈发展历程
Bqiuer
AIAI笔记人工智能ai
2023年,要说最让人震惊的热点,无疑就是AI技术的大爆发!从1950年的“图灵测试”标志着人工智能雏形的诞生,一些最顶尖的技术团队、技术学科进行研究,到如今几十年的时间。一、AI的历史进程人工智能(ArtificialIntelligence,AI)的历史进程可以追溯到上世纪50年代。1950年代-1960年代:起步阶段1950年,英国数学家艾伦·图灵提出了“图灵测试”,这是第一个旨在检验机器智
- AI产品怎样才能打造出像人类一样聪明和有情商?
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着人工智能技术的飞速发展、算法能力的不断增强、数据集的积累、计算设备的普及,人工智能已经成为各个行业、各个领域的重要突破性技术。然而,面对这一技术带来的巨大变革,如何为用户提供更加人性化的服务,并让人工智能模型对用户输入做出智能回应,则成为了一个长期且艰难的挑战。今天,我们将讨论一些常见的人机交互相关的问题,如语言模型、对话系统、生成模型等,并从中可以窥视到人
- 最全中文对话数据集(不定期更新)
数据猎手小k
人工智能大数据
随着人工智能技术的发展,自然语言处理(NLP)领域中的对话系统逐渐成为研究的热点。为了提升对话系统的性能,需要大量的高质量对话数据来训练和优化模型。然而,中文对话数据相对于英文来说较为稀缺,且质量参差不齐,这限制了中文对话系统的发展。因此,构建大规模、高质量的中文对话数据集成为了一个迫切的需求。一、研究意义1、推动中文NLP发展:大规模高质量的中文对话数据集能够为中文自然语言处理领域的研究提供基础
- DCMNet一种用于目标检测的轻量级骨干结构模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法目标检测
模型背景在深度学习技术快速发展的背景下,目标检测领域取得了显著进展。早期的手工特征提取方法如Viola-Jones和HOG逐渐被卷积神经网络(CNN)取代,其中AlexNet在2012年的ILSVRC比赛中表现突出,推动了CNN在计算机视觉中的广泛应用。然而,这些早期模型在精度和效率方面仍存在不足,尤其是在处理复杂场景和小目标时表现不佳。这为DCMNet等新型轻量化目标检测模型的出现提供了契机,旨
- Python人工智能学习路线,来自阿里巴巴佛系Python程序员的指南
阿里P6+
2024年程序员学习python人工智能学习
其实,这两方面都是存在的,但都很片面,这里不加赘述。客观地说,数字化、智能化是人类社会发展的趋势,而当下人工智能无疑是一大热门,那是蓝海还是火海?我们回到老道理——水的深度,只有你自己去试试水才知道。当你对上面情况有了初步的了解并想试试水,需要面对的问题是:AI入门容易吗?答案其实是否定的,难!AI领域需要钻研算法原理、大量复杂的公式及符号、无所适从的项目都是劝退一时热度初学者的原因。但对于一个初
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- 百度安全获得中国信通院深度伪造视频检测服务评估优秀级
安全
近年来深度合成技术迅猛发展的背后,“真实”和“虚假”的界限愈发难以分辨,技术滥用和恶意应用已经引发了一系列风险。随着技术的快速发展,党和国家高度重视深度合成技术的治理工作,先后发布了《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》,旨在加强互联网信息服务深度合成管理,促进深度合成服务健康发展,防范相关安全风险。中国信息通信研究院持续跟进深度合成技术及其应用的发展态势,自201
- AIoT安全与隐私自动化建设:实践与展望
ITPUB-微风
安全自动化运维
随着物联网(IoT)的快速发展,AIoT(人工智能物联网)已成为新时代的技术趋势。然而,随着设备的增多和应用的广泛,AIoT的安全与隐私问题也日益凸显。本文将探讨AIoT安全与隐私自动化建设的实践与展望。一、背景AIoT设备数量的激增带来了诸多安全挑战,如僵尸网络、中间人攻击、隐私泄露等。这些威胁不仅影响设备的正常运行,还可能对用户隐私造成严重损害。因此,建立有效的AIoT安全与隐私保护机制迫在眉
- 消费者产品报告2025-在通用人工智能时代重新获得相关性报告300+份集萃解读|附PDF下载
数据挖掘深度学习机器学习算法
原文链接:https://tecdat.cn/?p=40823在全球经济形势复杂多变、技术革新加速的当下,消费品行业正经历深刻变革。本报告汇总解读基于权威数据,深入剖析该行业在2024-2025年的发展态势,为企业提供市场洞察与策略建议,助力其在通用人工智能时代找准方向、重塑竞争优势。本报告汇总洞察基于文末470份消费者行业研究报告的数据,报告合集已分享在交流群,阅读原文进群和500+行业人士共同
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,