- Android10.0关于发送广播Sending non-protected broadcast android.price.public.close
安卓兼职framework应用工程师
android10.0Rom定制化高级进阶android广播broadcastsystem异常广播
1.前言在10.0的相关rom定制化开发中,在进行某些功能开发过程中,发送广播在开发功能的过程中,也是非常常用的,然而在系统中为了安全,在发送第三方广播中,会出现ams中的异常,接下来分析下相关的功能,看下解决怎么不发生异常的功能2.关于发送广播Sendingnon-protectedbroadcastandroid.price.public.close.panelfromsystem异常处理的核
- 2025-03-01 学习记录--C/C++-PTA 7-35 有理数均值
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️二、代码(C语言)⭐️#include//【关键】计算最大公约数(GCD)longlonggcd(longlonga,longlongb){while(b!=0){//当b不为0时循环longlongtemp=b;//临时变量存储b的值b=a%b;//计算a除以b的余数,赋值给ba=temp;//将之前存储的b的值赋值给a
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- [Machine Learning] K-means算法
进阶的小蜉蝣
machinelearning算法kmeans机器学习
HuBERT预训练过程中会用到K-means算法,本文简单介绍一下K-means算法的基本流程。简单地讲,K-means就是给特征向量集进行聚类。给定一个特征向量集{X}和目标聚类数N,K-means会不断迭代,直到X被分成N类,且每一类的中心点不再明显变化。先看一个简单例子:fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotli
- golang 内存对齐和填充规则
老赵不会写代码
go语言golang开发语言后端
内存对齐和填充规则对齐要求:每个数据类型的起始地址必须是其大小的倍数。int8(1字节):不需要对齐。int16(2字节):起始地址必须是2的倍数。int32(4字节):起始地址必须是4的倍数。int64(8字节):起始地址必须是8的倍数。填充规则:如果当前偏移量不是下一个成员变量对齐要求的倍数,则编译器会在前一个成员后插入“填充字节”,以使下一个成员的起始地址满足对齐要求。结构体总大小:结构体的
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- K-means聚类:解锁数据隐藏结构的钥匙
蓝天资源分享
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- Delta Lake的Liquid Clustering
不确定性确定你我
大数据
DeltaLake的LiquidClustering(液态聚类)是一种高效的数据布局优化技术,旨在解决传统分区和Z-Order排序的局限性。它通过自动化和增量式的数据布局优化,提升查询性能并减少存储和计算成本。以下是其原理、实现方式以及实际场景中的应用解析。LiquidClustering的核心原理动态数据布局:LiquidClustering基于树形算法,优化数据文件的大小和数量,使其均匀分布。
- 仿12306项目选座购票业务逻辑
Sao_E
项目实战java数据库分布式springbootspringcloud
12306项目选座购票业务逻辑文章目录12306项目选座购票业务逻辑项目分享选座逻辑购票逻辑更新余票逻辑用户选座功能服务器售票功能0.业务数据校验1.保存确认订单表,状态初始化2.查出余票记录,需要得到真是的库存3.扣减余票数量,并判断余票是否足够4.选座开始计算相对第一个座位的偏移值4.1一个车厢一个车厢获取座位数据4.2挑选符合条件的座位,如果这个车厢不满足,则进入下一个车厢(多个选座应在一个
- 搭载紫光展锐芯!全球首款同传翻译眼镜INMO GO2重磅上市
紫光展锐官方
人工智能大数据
近日,搭载紫光展锐W517芯片平台的INMOGO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMOGO2以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。INMOGO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提
- Go与PHP性能对比分析
大0马浓
golangphp开发语言
以下是Go1.22版本和PHP8.3版本+Swoole的性能对比一、核心性能指标对比指标Go(1.22版本)PHP(8.3版本+Swoole)差距倍数单请求响应时间0.8ms(JSON序列化)2.5ms(Swoole协程模式)3.1倍并发吞吐量18万QPS(4核8G)5.2万QPS(Swoole+OPcache)3.5倍内存占用50MB/协程(百万级并发)180MB/进程(协程池模
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- Virtual Scrolling 虚拟滚动优化方案
shaoin_2
前端零碎前端vue.js
虚拟滚动(VirtualScrolling)是一种优化前端渲染大量数据的技术,它通过按需渲染可见区域的内容,避免一次性创建所有DOM元素,从而解决性能问题。以下是其核心原理:1.核心思想物理世界:假设列表有10,000条数据,传统渲染会生成10,000个DOM节点。虚拟滚动:只渲染用户当前可见的20条数据(视窗区域),其余数据通过占位和位置偏移模拟完整列表。2.实现步骤(1)容器与占位容器高度:设
- 基于Arcgis的python脚本实现相邻矢量面的高度字段取平均值
GIS从业者
Python君arcgispython开发语言
背景在地理信息系统(GIS)数据处理或三维建模等实际应用场景中,我们常常会遇到需要对矢量面数据进行精细化处理的需求。其中一个常见的任务便是对相邻的矢量面中的高度字段开展特定操作。具体而言,当我们在分析一系列相互毗邻的矢量面时,若发现相邻的矢量面之间高度差值小于预先设定的阈值,那么就需要采取一种数据优化策略,即把这些相邻矢量面的高度统一取平均值。这样做的目的在于使数据更加平滑、合理,减少因局部高度异
- 听说Zynq-手把手教你自定义ip核并调用
不只会拍照的程序猿
听说ZYNQ嵌入式eclipseubuntufpgaverilog
概述小编最近在研究Zynq,因为对其相对陌生,在探索过程中也遇到了不少坑,这里将如何创建IP核并调用的方法步骤总结记录,以免日后忘记。注意★环境:Vivado2018.2。开发板:digilent(迪芝伦)公司的ZYBO创建IP核创建工程1.打开vivado软件,选择CreateProject创建项目。2.输入工程名和路径,勾选createprojectsubdirectory,为你自动在目录下创
- 蓄电池在线监测、蓄电池在线核容系统
西安金泽
其他
一、产品技术背景在电网变电站中,对于直流蓄电池组状态的判断主要依赖于人工周期性的放电测试,通过年度的核对性放电,确定电池组容量是否在标称容量的80%以上,核查容量不足的电池;通过季度的带载放电,核查电池的开路现象。变电站的电池组普遍配置了以电压监测为主的蓄电池在线监测,但对于运行中电池状态的判断毫无作用。目前的核对性放电,时间长,基本上采用电阻性负载,电池组的放电转化为热能散发,放电时必须有人在现
- python学生分布_python统计函数库scipy.stats的用法解析
weixin_39967096
python学生分布
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。1.生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,s
- python统计函数库_python统计函数库scipy.stats的用法1/3
颜卿Lydia
python统计函数库
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法。生成服从指定分布的随机数norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0,sca
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- 核货宝:外贸订货系统是什么?有哪些功能?让您不只做家门口的生意!
核货宝订货系统
订货系统多语言订货系统外贸订货系统跨境电商国际电商系统批发订货系统多语言订货系统
在如今全球化的经济背景下,外贸已经成为许多企业发展的重要途径之一。随着信息技术的不断进步,外贸行业也逐渐进入了数字化时代。为了提高外贸企业的运营效率,降低人工成本,许多企业开始使用各种外贸订货系统。而在这些系统中,核货宝外贸订货系统作为一款先进的、智能化的外贸管理工具,正成为越来越多外贸企业的首选。一、什么是核货宝外贸订货系统?核货宝外贸订货系统是一款集订单管理、采购管理、库存管理和物流管理为一体
- Python大数据处理实验报告(三)
小李独爱秋
python开发语言pycharm大数据
实验目的本次实验的目的是练习使用Python编程语言和相关库进行网络爬虫和数据处理任务。具体来说,您将学习以下内容:使用Python中的requests库和BeautifulSoup库来爬取当当网某一本书的网页内容,并将其保存为html格式文件。学习使用Python中的requests库和正则表达式来爬取豆瓣网上某本书的前50条短评内容,并计算评分的平均值。了解如何使用Python中的reques
- (leetcode学习)295. 数据流的中位数
我不是彭于晏丶
leetcode学习c++算法
中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。例如arr=[2,3,4]的中位数是3。例如arr=[2,3]的中位数是(2+3)/2=2.5。实现MedianFinder类:MedianFinder()初始化MedianFinder对象。voidaddNum(intnum)将数据流中的整数num添加到数据结构中。doublefindMedian()
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 数据挖掘与数据分析的区别是什么
中琛源科技
数据挖掘与数据分析两者紧密相连,具有循环递归的关系,数据分析结果需要进一步进行数据挖掘才能指导决策,而数据挖掘进行价值评估的过程也需要调整先验约束而再次进行数据分析。从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对未来的预测,一般应用于分类、聚类、推荐、关联规则等。从分析的过程来看,数据分析更侧重于统计学上面的一些方法,经过人的推理演译得到结论;数据挖掘更侧
- 本地部署大语言模型-DeepSeek
NightReader
语言模型人工智能自然语言处理
DeepSeek是国内顶尖AI团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称"AI界的六边形战士"。HosteaseAMD9950X/96G/3.84TNVMe/1G/5IP/RTX4090GPU服务器提供多种计费模式。DeepSeek-R1-32B配置配置项规格要求CPU16核以上(如AMDRyzen9950)内存96GB硬盘960GB显卡24GB+显存(如RTX40
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- C++之,我是如何解决数据处理与算法难题的
一杯年华@编程空间
C++实战c++算法开发语言
C++之,我是如何解决数据处理与算法难题的在C++编程的世界里,我经历了无数次与代码“斗智斗勇”的过程,其中数据处理和算法应用方面的问题让我印象尤为深刻。今天,就和大家分享一下我在这方面遇到的挑战以及解决问题的方法。在一个数据处理项目中,我需要对大量的数值数据进行各种运算。例如,有一个包含员工绩效得分的数组,我需要计算这些得分的总和、平均值,还需要根据不同的权重计算加权总和,并且对数组进行一些变换
- 机器学习之经典算法(十六) Birch算法
AI专家
机器之心修炼之路
(一)Birch算法简介:BIRCH(BalancedIterativeReducingandClusteringUsingHierarchies)全称是:利用层次方法的平衡迭代规约和聚类。BIRCH算法是1996年由TianZhang提出来的。Birch算法就是通过聚类特征(CF)形成一个聚类特征树,root层的CF个数就是聚类个数。整个算法实现共分为4个阶段:1.扫描所有数据,建立初始化的CF
- 2024华为OD机试真题-根据某条件聚类最少交换次数(C++/Java/Python)-E卷-100分
2024剑指offer
华为odpythonc++java
2024华为OD机试最新E卷题库-(C卷+D卷+E卷)-(JAVA、Python、C++)目录题目描述输入描述输出描述用例1题目解析代码c++pythonjava题目描述给出数字K,请输出所有结果小于K的整数组合到一起的最少交换次数。组合一起是指满足条件的数字相邻,不要求相邻后在数组中的位置。数据范围:-100≤K≤100-100≤数组中数值≤100输入描述第一行输入数组:13140第二行输入K数
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><