- 音视频知识图谱 2022.04
关键帧Keyframe
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看《音视频面试题集锦2022.04》。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱。下面是2022.04月知识图谱新增的内容节选:1)图谱路径:**采集/音频采集/声音三要素/响度******主观计量响
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 【笔记】自然语言处理NLP---概论
xhanZ
NLP相关
(from人文学院开设课程)目录1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自然语言的特点1.1.2自然语言处理研究的意义1.1.3国外研究现状1.2NLP的方法、特点和规律1.2.1理性主义与经验主义1.2.2语料库语言学:经验主义研究方法1.2.3汉语语言处理的方法1.2.4基于知识图谱的深度学习1.自然语言处理概论1.1自然语言处理研究的意义、历史与现状1.1.1自
- GraphRAG入门:基本概念、应用场景及学习方法
学习中的程序媛~
学习方法
一、GraphRAG的用途是什么GraphRAG用于复杂信息分析,适合处理跨文档、有噪音或主题抽象的数据.二、GraphRAG能做什么GraphRAG能连接大量信息,回答普通难搜索难以解答的问题.她可以回答跨文档的问题,也能总结数据集的主要主题.三、GraphRAG的特点1.知识图谱提取:使用llm自动从输入文本文档中创建知识图谱,表示数据中的实体、关系和关键声明2.层次聚类使用leiden技术对
- 【Java那些年系列-启航篇 01】史上最强JavaSE学习路线图 & 知识图谱
夏之以寒
Java那些年专栏JavaJavaSEJava学习路线Java知识图谱
【Java那些年系列-启航篇01】史上最强JavaSE学习路线图&知识图谱作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知
- 【Java那些年系列-启航篇 04】Java程序架构:深入理解类与对象的设计原则
夏之以寒
Java那些年专栏java架构类对象数据结构
作者名称:纸飞机-暖阳作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:Java那些年专栏专栏介绍:本专栏涵盖了JavaSE从基础语法到面向对象编程,从异常处理到集合框架,从I/O流到多线程并发,再到网络编程和虚拟机内部机制等一系列编程要素个人感慨:市面上关于JavaSE的学习路线或知识图谱很繁杂,学习起来比较费劲,Java知识体系非常庞大,刚接触阶段只需要
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- graphRAG原理解析——基于微软graphRAG+Neo4j llm-graph-builder
赖皮猫
neo4j
知识图谱生成llm-graph-builder(以下简称LGB)也使用了最新的graph+RAG的思路,使用知识图谱来加持RAG,提供更加准确和丰富的知识问答。知识图谱的生成上,利用大模型的泛化能力来自动生成和构建知识图谱,包括实体、关系和属性等。其相较于微软开源的GraphRAG(以下简称MS-GRAG)有很多相似和同源之处,但也有很多的不同。模块能力llm-graph-builderGraph
- 在neo4j中导入csv文件并构建知识图谱
芹菜还是菜
知识图谱neo4j知识图谱
本文csv文件数据来源于openKG中达观的开源知识图谱数据。从开源社区中下载下来的数据文件还是json,先用python把json文件转为csv文件。import csvimport jsonwith open('entities.json','r',encoding='utf-8')as fp: data=json.load(fp,strict=False)csv_file=open('en
- 深入理解PyTorch中的MessagePassing
小桥流水---人工智能
深度学习机器学习算法人工智能pytorch人工智能python
深入理解PyTorch中的MessagePassing图神经网络(GraphNeuralNetworks,简称GNNs)在近年来已成为处理图形数据的一种强大工具,广泛应用于社交网络分析、蛋白质结构预测、知识图谱增强等多个领域。PyTorchGeometric(PyG)是基于PyTorch的一个库,专为图神经网络的研究和实现而设计。在PyG中,MessagePassing类是实现图神经网络层的核心组
- ecchart关系图展示(知识图谱)
P-ShineBeam
知识基础echarts前端javascript
ECharts关系图#box{display:none;background-color:lightgoldenrodyellow;width:200px;height:260px;position:absolute;right:10px;top:150px;}#box-type{display:block;}#box-name{display:block;}/*#box-index{*//*di
- 计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 机器学习 大数据毕业设计 大数据毕设 机器学习 人工智能
计算机毕业设计大全
开发技术前端:vue.js、element-ui、echarts后端:springboot、mybatis大数据:spark、hadoop数据库:mysql关系型数据库、neo4j图数据库算法:协同过滤推荐算法、MLP深度学习模型、SVD神经网络混合推荐算法、lstm模型、KNN、CNN、Sklearn、K-Means第三方平台:百度AI、阿里云短信、支付宝沙箱支付爬虫:Pythonchrome-
- React+Vis.js(06):vis.js修改选中节点的样式和边的样式
叁拾舞
Vis.jsjavascriptreact.js前端vis.js
文章目录初始化知识图谱选中节点修改节点背景颜色选中节点修改节点文字颜色未选中节点恢复节点背景颜色和文字颜色修改当前选中节点的边的颜色初始化知识图谱创建network.js组件,来初始化原始知识图谱:importReact,{useRef,useEffect}from"react";importvisfrom"vis";constnodes=newvis.DataSet([
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications
UnknownBody
LLMDailySurveyPaperLLMforGraph语言模型人工智能自然语言处理
本文是LLM系列文章,针对《ASurveyofLargeLanguageModelsonGenerativeGraphAnalytics:Query,Learning,andApplications》的翻译。生成图分析的大型语言模型综述:查询、学习和应用摘要1引言2前言3图结构理解任务4图学习任务5图形推理6图表示7基于知识图谱的增强检索8基于图LLM的应用9基准数据集和评估10未来的方向11结论
- 计算机毕业设计hadoop+spark知识图谱美食推荐系统 美食价格预测 美团推荐系统 美团爬虫 大众点评爬虫 美食数据分析 美食可视化大屏 大数据毕设
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集大众点评美食数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartsspar
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 多模态大模型Internvl-1.5-26B微调后部署及测试实录(附代码)
写代码的中青年
大模型promptpython大模型swift微调lora
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。基于Dify的智能分类方案:大模型结合KNN算法(附代码)OpenCompass:大模型测评工具一文读懂多模态大模型基础架构大模型管理平台:one-api使用指南大模型RAG、ROG、RCG概念科普RAGOnMedicalKG:大模型
- 百度Ernie大模型是什么?
会飞的岛格酱
AIGCAIGC百度人工智能
百度的Ernie模型(EnhancedRepresentationthroughkNowledgeIntegration)是一个基于Transformer架构的预训练语言模型。它由百度研发,旨在通过整合大规模语料和知识图谱来增强模型的语言理解和生成能力。它通过整合大规模语料和知识图谱,采用多任务学习和分层预训练策略,在多个自然语言处理任务上取得了显著的性能提升。Ernie模型的不断发展和优化,使其
- 3.Python数据分析—数据分析入门知识图谱&索引(知识体系中篇)
以山河作礼。
Python数据分析项目数据分析知识图谱数据挖掘python开发语言
3.Python数据分析—数据分析入门知识图谱&索引-知识体系中篇一·个人简介二·数据获取和处理2.1数据来源:2.2数据清洗:2.2.1缺失值处理:2.2.2异常值处理:2.3数据转换:2.3.1数据类型转换:2.3.2数据编码:2.4数据合并与重塑:2.4.1数据合并:2.4.2数据拼接:2.4.3数据重塑:三·数据探索与分析3.1描述性统计分析3.2数据可视化原则和技巧3.3探索性数据分析(
- 智合同如何助力建筑行业合同智能化管理
智合同(小智)
合同智能应用AI技术降本增效提质人工智能自然语言处理知识图谱深度学习大数据
#建筑行业#人工智能#AI#合同智能应用#深度学习#自然语言处理技术#知识图谱智合同-采用深度学习、自然语言处理技术、知识图谱等人工智能技术,为企业提供专业的合同相关的智能服务。其主要服务包含:合同智能审查、合同要素智能提取、合同版本对比、合同智能起草、ICR智能识别、合同履约追踪、文本一致性对比、广告审查、合同范本库等服务。智合同在助力建筑行业合同智能化管理方面具有显著的优势。首先,智合同利用A
- 【大咖力荐 新手必备】软件开发入门,这300篇文章就够了!
高校俱乐部
软件开发新手必备数据编码IP
小编在这里根据知识图谱整理了CSDN站内的优质文章300篇,帮助见习工程提升技术能力、实现系统化学习!基础IT技术文章300篇大合集包含:【信息/编码】进制转换25篇、数据编码25篇;【IP/组网】网关与网段25篇、IP协议26篇、主机与DNS23篇、访问控制37篇;【程序逻辑】JavaScript29篇、常用算法37篇;【Web基础】HTML31篇、CSS32篇、DOM与BOM23篇扫码添加小助
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 视频回放- Neo4j “图,无处不在 ”关联系列线上研讨会 : 知识图谱助力企业提升数据应用价值
Jennifer726
音视频知识图谱bigdata数据库开发数据仓库
感谢您注册参加1月12日Neo4j“图,无处不在”关联系列线上研讨会-知识图谱助力企业提升数据应用价值。以下是相关内容视频回放。欢迎推荐给更多的同事和朋友观看。图的影响力-回顾2021,展望2022(Dr.JimWebber,Neo4j首席科学家)https://www.bilibili.com/video/BV1V44y1L7kX/从数据分析到数据智能-Neo4j知识图谱介绍(金昕,Neo4j高
- 构建生物医学知识图谱from zero to hero (4):通过Neo4j构建知识图谱
ASKCOS
AIDDCADD化学生物知识图谱neo4j人工智能
图数据库是一种专门用于存储图形数据的NoSQL数据库。与传统的关系型数据库和其他NoSQL数据库不同,图数据库利用图形数据模型来存储和管理数据。图形数据模型由节点和边组成,节点代表实体,边代表实体之间的关系。例如,在社交网络中,用户可以表示为节点,朋友关系可以表示为边。图数据库具有以下特点:灵活的数据模型:图数据库采用图形数据模型,可以灵活地存储和表示各种类型的数据,例如社交网络、地图、知识图谱等
- 【了解机器学习的定义与发展历程】
AK@
人工智能人工智能机器学习
曾梦想执剑走天涯,我是程序猿【AK】目录简述概要知识图谱简述概要了解机器学习的定义与发展历程知识图谱机器学习(MachineLearning,ML)是一门跨学科的学科,它使用计算机模拟或实现人类学习行为,通过不断地获取新的知识和技能,重新组织已有的知识结构,从而提高自身的性能。简单来说,机器学习就是让计算机从数据中学习规律,并根据这些规律对未来数据进行预测。机器学习的发展历程可以追溯到上世纪50年
- 【人工智能学习思维脉络导图】
AK@
人工智能人工智能学习
曾梦想执剑走天涯,我是程序猿【AK】目录知识图谱1.基础知识2.人工智能核心概念3.实践与应用4.持续学习与进展5.挑战与自我提升6.人脉网络知识图谱人工智能学习思维脉络导图1.基础知识计算机科学基础数学基础(线性代数、微积分、概率论和统计学)编程语言(Python、R等)2.人工智能核心概念机器学习监督学习无监督学习强化学习深度学习神经网络卷积神经网络(CNN)循环神经网络(RNN)自然语言处理
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟