本章使用pytorch训练resnet50,使用cifar数据集。
数据集:
import torch
from torch import nn, optim
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from resnet50 import ResNet50
# 用CIFAR-10 数据集进行实验
def main():
batchsz = 2
cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]), download=True)
cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)
cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]), download=True)
cifar_test = DataLoader(cifar_test, batch_size=1, shuffle=True)
x, label = iter(cifar_train).next()
print('x:', x.shape, 'label:', label.shape)
device = torch.device('cpu')
model = ResNet50().to(device)
print(*list(model.children())[-3:-2])
criteon = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# print(model)
print(iter(cifar_test).next()[0].shape)
for epoch in range(1):
model.train()
for batchidx, (x, label) in enumerate(cifar_train):
if batchidx<=2:
x, label = x.to(device), label.to(device)
logits = model(x)
loss = criteon(logits, label)
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("epoch:",epoch, "index:",batchidx)
else:
continue
print(epoch, 'loss:', loss.item())
# # # PATH="model/test.pth"
torch.save(model, "model2/test.pth")
torch.save(model.state_dict(),"model2/test2.pth")
model.eval()
with torch.no_grad():
# test
total_correct = 0
total_num = 0
for idx, (x, label) in enumerate(cifar_test):
if idx<=5:
x, label = x.to(device), label.to(device)
logits = model(x)
pred = logits.argmax(dim=1)
correct = torch.eq(pred, label).float().sum().item()
total_correct += correct
total_num += x.size(0)
# print(pred)
acc = total_correct / total_num
print(epoch, 'test acc:', acc)
if __name__ == '__main__':
main()
# # 保存整个网络
# torch.save(net, PATH)
# # 保存网络中的参数, 速度快,占空间少
# torch.save(net.state_dict(),PATH)
# #--------------------------------------------------
# #针对上面一般的保存方法,加载的方法分别是:
# model_dict=torch.load(PATH)
# model_dict=model.load_state_dict(torch.load(PATH))
from resnet50 import ResNet50
import torch
from PIL import Image
from torchvision import transforms
import cv2
import numpy as np
def prediect(img_path):
device = torch.device('cpu')
model=torch.load("model2/test.pth")
model=model.to(device)
# model = ResNet50()
# weight=torch.load("model/test2.pth")
# model.load_state_dict(weight)
# model=model.to(device)
img=cv2.imread(img_path)
img=cv2.resize(img, (224, 224))
img=np.reshape(img,(1,224,224,3))
img=img.transpose(0,3,1,2).copy()
print(img.shape)
img_ = torch.Tensor(img)
torch.no_grad()
outputs = model(img_)
_, predicted = torch.max(outputs, 1)
print('pred :',outputs, predicted)
if __name__ == '__main__':
img_path="img/dog2.jpg"
prediect(img_path)
import torch
import torch.nn as nn
from torch.nn import functional as F
class ResNet50BasicBlock(nn.Module):
def __init__(self, in_channel, outs, kernerl_size, stride, padding):
super(ResNet50BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channel, outs[0], kernel_size=kernerl_size[0], stride=stride[0], padding=padding[0])
self.bn1 = nn.BatchNorm2d(outs[0])
self.conv2 = nn.Conv2d(outs[0], outs[1], kernel_size=kernerl_size[1], stride=stride[0], padding=padding[1])
self.bn2 = nn.BatchNorm2d(outs[1])
self.conv3 = nn.Conv2d(outs[1], outs[2], kernel_size=kernerl_size[2], stride=stride[0], padding=padding[2])
self.bn3 = nn.BatchNorm2d(outs[2])
def forward(self, x):
out = self.conv1(x)
out = F.relu(self.bn1(out))
out = self.conv2(out)
out = F.relu(self.bn2(out))
out = self.conv3(out)
out = self.bn3(out)
return F.relu(out + x)
class ResNet50DownBlock(nn.Module):
def __init__(self, in_channel, outs, kernel_size, stride, padding):
super(ResNet50DownBlock, self).__init__()
# out1, out2, out3 = outs
# print(outs)
self.conv1 = nn.Conv2d(in_channel, outs[0], kernel_size=kernel_size[0], stride=stride[0], padding=padding[0])
self.bn1 = nn.BatchNorm2d(outs[0])
self.conv2 = nn.Conv2d(outs[0], outs[1], kernel_size=kernel_size[1], stride=stride[1], padding=padding[1])
self.bn2 = nn.BatchNorm2d(outs[1])
self.conv3 = nn.Conv2d(outs[1], outs[2], kernel_size=kernel_size[2], stride=stride[2], padding=padding[2])
self.bn3 = nn.BatchNorm2d(outs[2])
self.extra = nn.Sequential(
nn.Conv2d(in_channel, outs[2], kernel_size=1, stride=stride[3], padding=0),
nn.BatchNorm2d(outs[2])
)
def forward(self, x):
x_shortcut = self.extra(x)
out = self.conv1(x)
out = self.bn1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = F.relu(out)
out = self.conv3(out)
out = self.bn3(out)
return F.relu(x_shortcut + out)
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = nn.Sequential(
ResNet50DownBlock(64, outs=[64, 64, 256], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0]),
ResNet50BasicBlock(256, outs=[64, 64, 256], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0]),
ResNet50BasicBlock(256, outs=[64, 64, 256], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0]),
)
self.layer2 = nn.Sequential(
ResNet50DownBlock(256, outs=[128, 128, 512], kernel_size=[1, 3, 1], stride=[1, 2, 1, 2], padding=[0, 1, 0]),
ResNet50BasicBlock(512, outs=[128, 128, 512], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0]),
ResNet50BasicBlock(512, outs=[128, 128, 512], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0]),
ResNet50DownBlock(512, outs=[128, 128, 512], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1], padding=[0, 1, 0])
)
self.layer3 = nn.Sequential(
ResNet50DownBlock(512, outs=[256, 256, 1024], kernel_size=[1, 3, 1], stride=[1, 2, 1, 2], padding=[0, 1, 0]),
ResNet50BasicBlock(1024, outs=[256, 256, 1024], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0]),
ResNet50BasicBlock(1024, outs=[256, 256, 1024], kernerl_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0]),
ResNet50DownBlock(1024, outs=[256, 256, 1024], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0]),
ResNet50DownBlock(1024, outs=[256, 256, 1024], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0]),
ResNet50DownBlock(1024, outs=[256, 256, 1024], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0])
)
self.layer4 = nn.Sequential(
ResNet50DownBlock(1024, outs=[512, 512, 2048], kernel_size=[1, 3, 1], stride=[1, 2, 1, 2],
padding=[0, 1, 0]),
ResNet50DownBlock(2048, outs=[512, 512, 2048], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0]),
ResNet50DownBlock(2048, outs=[512, 512, 2048], kernel_size=[1, 3, 1], stride=[1, 1, 1, 1],
padding=[0, 1, 0])
)
self.avgpool = nn.AvgPool2d(kernel_size = 7,stride=1,ceil_mode=False)
# self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
self.fc = nn.Linear(2048, 10)
# 使用卷积代替全连接
self.conv11=nn.Conv2d(2048, 10, kernel_size=1, stride=1, padding=0)
def forward(self, x):
out = self.conv1(x)
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out=self.conv11(out)
out = out.reshape(x.shape[0], -1)
# out = self.fc(out)
return out
if __name__ == '__main__':
x = torch.randn(1, 3, 224, 224)
net = ResNet50()
out = net(x)
print('out.shape: ', out.shape)
print(out)
import torch
from torchsummary import summary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load("model2/test.pth") # pytorch模型加载
model.eval()
for name in model.state_dict():
print(name)
summary(model, (3, 224, 224))
input_shape=list(map(int, "1,3,224,224".split(",")))
x = torch.randn(input_shape) # 生成张量
x = x.to(device)
export_onnx_file = "model2/test.onnx" # 目的ONNX文件名
torch.onnx.export(model, x, export_onnx_file, verbose=True)
# torch.onnx.export(model, x, export_onnx_file, verbose=True, export_params=True, do_constant_folding=True, opset_version=11)
# input_names=['boxes']
# output_names=['layer1.1.conv1.bias']
# torch.onnx.export(model, x, export_onnx_file,
# export_params=True,
# do_constant_folding=True,
# input_names=input_names,
# output_names=output_names
# )
import cv2
import numpy as np
import onnxruntime as rt
def image_process(image_path):
mean = np.array([[[0.485, 0.456, 0.406]]]) # 训练的时候用来mean和std
std = np.array([[[0.229, 0.224, 0.225]]])
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (224, 224)) # (96, 96, 3)
image = img.astype(np.float32)/255.0
image = (image - mean)/ std
image = image.transpose((2, 0, 1)) # (3, 96, 96)
image = image[np.newaxis,:,:,:] # (1, 3, 96, 96)
image = np.array(image, dtype=np.float32)
return image
def onnx_runtime():
imgdata = image_process('img/test.jpg')
sess = rt.InferenceSession("model2/test.onnx")
input_name = sess.get_inputs()[0].name
output_name = sess.get_outputs()[0].name
pred_onnx = sess.run([output_name], {input_name: imgdata})
print("outputs:",np.array(pred_onnx)[0].shape)
onnx_runtime()
import numpy as np
import torch
import onnx
import onnxruntime
import pickle
# 测试数据
x = torch.randn(1,3,224,224, requires_grad=False)
print(type(x),x.shape)
# 使用 ONNX 的 API 检查 ONNX 模型
onnx_model = onnx.load("model2/test.onnx")
onnx.checker.check_model(onnx_model)
# onnx模型测试
ort_session = onnxruntime.InferenceSession("model2/test.onnx")
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
#结果输出
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
ort_outs = ort_session.run(None, ort_inputs)
ort_out = ort_outs[0]
print(x.shape, ort_out.shape)
# torch模型测试
# model=torch.load("test/person_reid.pth",map_location='cpu')
# model.eval()
# torch_out = model(x)
# 比较ONNX 和 PyTorch 的结果
# np.testing.assert_allclose(to_numpy(torch_out), ort_out, rtol=1e-03, atol=1e-05)
# print("模型没有太大差异!")
import onnx
from onnx_tf.backend import prepare
def onnx2pb(onnx_input_path, pb_output_path):
onnx_model = onnx.load(onnx_input_path) # load onnx model
tf_exp = prepare(onnx_model) # prepare tf representation
tf_exp.export_graph(pb_output_path) # export the model
if __name__ == "__main__":
# onnx_input_path = 'test/person_reid.onnx'
# pb_output_path = 'test/person_reid2.pb'
onnx_input_path = 'model2/test.onnx'
pb_output_path = 'model2/test.pb'
onnx2pb(onnx_input_path, pb_output_path)
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python import pywrap_tensorflow
import cv2
import numpy as np
import torch
import onnx
import onnxruntime
import pickle
def recognize(img, pb_file_path):
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
with open(pb_file_path, "rb") as f:#主要步骤即为以下标出的几步,1、2步即为读取图
output_graph_def.ParseFromString(f.read())# 1.将模型文件解析为二进制放进graph_def对象
_ = tf.import_graph_def(output_graph_def, name="")# 2.import到当前图
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
graph = tf.get_default_graph()# 3.获得当前图
# # 4.get_tensor_by_name获取需要的节点
# x = graph.get_tensor_by_name("IteratorGetNext_1:0")
# y_out = graph.get_tensor_by_name("resnet_v1_50_1/predictions/Softmax:0")
x = graph.get_tensor_by_name("data:0")
y_out = graph.get_tensor_by_name("reid_embedding:0")
# img=np.random.normal(size=(1, 224, 224, 3))
# img=cv2.imread(jpg_path)
# img=cv2.resize(img, (128, 256))
# img=np.reshape(img,(1,128,256,3))
# img=img.transpose(0,3,1,2).copy()
# print(img.shape)
#执行
output = sess.run(y_out, feed_dict={x:img})
pred=np.argmax(output, axis=1)
return output
# print("预测结果:", output.shape, output, "预测label:", pred)
jpg_path="img/test.jpg"
img=cv2.imread(jpg_path)
img=cv2.resize(img, (128, 256))
img=np.reshape(img,(1,128,256,3))
img=img.transpose(0,3,1,2).copy()
print(img.shape)
x = torch.randn(1,3,256,128, requires_grad=False)
img=x
# 测试pb
a=recognize(img, "test/gg.pb")
print(a.shape)
# b=recognize(img, "test/person_reid2.pb")
# np.testing.assert_allclose(a, b, rtol=1e-03, atol=1e-05)
# print(a.shape,a[0][4],b[0][4])
# # # 测试数据
# # x = torch.randn(1,3,256,128, requires_grad=False)
# # # x=torch.from_numpy(img)
# # # x.requires_grad=False
# # 使用 ONNX 的 API 检查 ONNX 模型
# onnx_model = onnx.load("test/person_reid.onnx")
# onnx.checker.check_model(onnx_model)
# # onnx模型测试
# ort_session = onnxruntime.InferenceSession("test/person_reid.onnx")
# def to_numpy(tensor):
# return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# #结果输出
# ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
# ort_outs = ort_session.run(None, ort_inputs)
# ort_out = ort_outs[0]
# print(ort_out.shape, ort_out[0][4])
# np.testing.assert_allclose(a, ort_out, rtol=1e-03, atol=1e-05)