常用求和公式

∑ \sum 求和公式

∑ i = 1 n i = n ( n + 1 ) 2 \sum_{i=1}^{n}i=\frac{n(n+1)}{2} i=1ni=2n(n+1)

∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)

∑ i = 1 n i 3 = [ n ( n + 1 ) 2 ] 2 \sum_{i=1}^{n}i^{3}=\left [\frac{n(n+1)}{2} \right ]^{2} i=1ni3=[2n(n+1)]2

∑ i = 1 n k a i = k ∑ i = 1 n a i \sum_{i=1}^{n}ka_{i}=k\sum_{i=1}^{n}a_{i} i=1nkai=ki=1nai

其中,k是常数

∑ i = 1 n ( a i + b i ) = ∑ i = 1 n a i + ∑ i = 1 n b i \sum_{i=1}^{n}(a_{i}+b_{i})=\sum_{i=1}^{n}a_{i}+\sum_{i=1}^{n}b_{i} i=1n(ai+bi)=i=1nai+i=1nbi

你可能感兴趣的:(线性代数)