DataWhale计算机视觉实践(目标检测)Task01

DataWhale计算机视觉实践(目标检测)Task01


文章目录

  • DataWhale计算机视觉实践(目标检测)Task01
    • 目标检测:
      • 一、基本概念:
      • 二、目标检测数据集VOC:
        • 1. VOC数据集简介
        • 2. VOC数据集的`dataloader`的构建


文中图片和部分内容、代码转自:动手学CV-Pytorch

目标检测:

一、基本概念:

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。百度百科

  • 图像分类和目标检测的区别:
    • 图像分类:只需要判断输入的图像中是否包含感兴趣物体。

    • 目标检测:需要在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。

DataWhale计算机视觉实践(目标检测)Task01_第1张图片

  • 目标检测的思路:

即定义大量的候选框,计算每一个候选框中基于分类网络得到的得分(代表当前框中有某个物体的置信度),最终得分最高的就代表识别的最准确的框,其位置就是最终要检测的目标的位置。

**先确立众多候选框,再对候选框进行分类和微调。**(RCNN、YOLO、SSD等经典网络模型思路。)

DataWhale计算机视觉实践(目标检测)Task01_第2张图片

  • 目标框定义方式:

    • 图像分类:标签信息是类别。
    • 目标检测:类别label,目标的位置信息(目标的外接矩形框bounding box)
      • bbox的格式通常有两种:(x1,y1,x2,y2)(x_c,y_c,w,h)

DataWhale计算机视觉实践(目标检测)Task01_第3张图片

  • 两种定义方式也可以进行互转,代码如下:
import torch
# 两种不同的目标框信息表达格式互转
def xy_to_cxcy(xy):
    """
    Convert bounding boxes from boundary coordinates (x_min, y_min, x_max, y_max) to center-size coordinates (c_x, c_y, w, h).

    :param xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # c_x, c_y
                      xy[:, 2:] - xy[:, :2]], 1)  # w, h


def cxcy_to_xy(cxcy):
    """
    Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).

    :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([cxcy[:, :2] - (cxcy[:, 2:] / 2),  # x_min, y_min
                      cxcy[:, :2] + (cxcy[:, 2:] / 2)], 1)  # x_max, y_max
  • 交并比(IoU):

IoU:Intersection over Union

  • 贯穿整个模型的训练测试和评价过程,目的是用来衡量两个目标框的重叠程度。
  • 表示两个目标框的交集占其并集的比例。
    I o U = i n t e r s e c t i o n u n i o n IoU = \frac{intersection}{union} IoU=unionintersection

DataWhale计算机视觉实践(目标检测)Task01_第4张图片

计算流程:
1.首先获取两个框的坐标,红框坐标: 左上(red_x1, red_y1), 右下(red_x2, red_y2),绿框坐标: 左上(green_x1, green_y1),右下(green_x2, green_y2)
2.计算两个框左上点的坐标最大值:(max(red_x1, green_x1), max(red_y1, green_y1)), 和右下点坐标最小值:(min(red_x2, green_x2), min(red_y2, green_y2))
3.利用2算出的信息计算黄框面积:yellow_area
4.计算红绿框的面积:red_areagreen_area
5.IoU = yellow_area / (red_area + green_area - yellow_area)

DataWhale计算机视觉实践(目标检测)Task01_第5张图片

  • IoU计算实现代码如下所示:
# 计算IoU
def find_intersection(set_1, set_2):
    """ 
    Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4) [x_1,y_1,x_2,y_2]                                                                                                          
    :param set_2: set 2, a tensor of dimensions (n2, 4) [x_1,y_1,x_2,y_2]
    :return: 返回交集的面积intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # PyTorch auto-broadcasts singleton dimensions
    # 计算出交集的左上角坐标max((red_x1, green_y1),(green_x1,red_y1))
    lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0))  # (n1, n2, 2)
    # 计算出交集的右下角坐标min((red_x2, red_y2), (green_x2, green_y2))
    upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0))  # (n1, n2, 2)
    # clamp:将输入input张量每个元素的夹紧到区间 [min,max][min,max],并返回结果到一个新张量。
    # 这里这样的处理为了体现若无交集,则upper-lower为负,此时返回0.
    intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0)  # (n1, n2, 2)
    # 返回交集的面积,有则返回实际计算的结果,无则是0
    return intersection_dims[:, :, 0] * intersection_dims[:, :, 1]  # (n1, n2)


def find_jaccard_overlap(set_1, set_2):
    """ 
    Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4)
    :param set_2: set 2, a tensor of dimensions (n2, 4)
    :return: 返回IoU Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # Find intersections
    # 计算交集的面积
    intersection = find_intersection(set_1, set_2)  # (n1, n2)

    # Find areas of each box in both sets
    # 分别计算两个候选框的面积
    areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1])  # (n1)
    areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1])  # (n2)

    # Find the union
    # PyTorch auto-broadcasts singleton dimensions
    # 计算并集的面积
    union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection  # (n1, n2)
    # 返回IoU
    return intersection / union  # (n1, n2)

  • 小结:
    这部分主要介绍了一个实现目标检测的解决思路:
    先确定众多候选框,再对候选框进行分类和微调,以最终确定图中有多少个物体极其对应的类别。

二、目标检测数据集VOC:

1. VOC数据集简介

VOC数据及时目标检测领域最常用的标准数据集之一,在练习中主要使用VOC2007VOC2012这两个最流行的版本作为训练和测试的数据。

  • 数据集类别:VOC数据集主要分为4大类,20个小类。

    • Vehicles
    • Household
    • Animals
    • Person
      https://raw.githubusercontent.com/datawhalechina/dive-into-cv-pytorch/master/markdown_imgs/chapter03/3-5.png
  • 数据集量级:
    DataWhale计算机视觉实践(目标检测)Task01_第6张图片

  • 数据集下载链接:
    VOC数据集–解压码(7aek)

  • 数据集结构说明:

    • JPEGImages:这个目录中的图片,包括了训练、验证和测试用到的所有图片。
    • ImageSets
      • Layout:训练、验证、测试和训练+验证数据集的文件名;
      • Segmentation:分割所用的训练、验证、测试和训练+验证数据集的文件名。
      • Main:各个类别所有图片的文件名。
    • Annotations:存放了每张图片相关的标注信息,以xml格式形式存储。某一张图片对应的文件如下:
<annotation>
	<folder>VOC2007folder>
    
	<filename>000001.jpgfilename>
	<source>
		<database>The VOC2007 Databasedatabase>
		<annotation>PASCAL VOC2007annotation>
		<image>flickrimage>
		<flickrid>341012865flickrid>
	source>
	<owner>
		<flickrid>Fried Camelsflickrid>
		<name>Jinky the Fruit Batname>
	owner>
    
	<size>
		<width>353width>
		<height>500height>
		<depth>3depth>
	size>
	<segmented>0segmented>
    
	<object>
        
		<name>dogname>
        
		<pose>Leftpose>
        
		<truncated>1truncated>
        
		<difficult>0difficult>
        
		<bndbox>
			<xmin>48xmin>
			<ymin>240ymin>
			<xmax>195xmax>
			<ymax>371ymax>
		bndbox>
	object>
    
	<object>
		<name>personname>
		<pose>Leftpose>
		<truncated>1truncated>
		<difficult>0difficult>
		<bndbox>
			<xmin>8xmin>
			<ymin>12ymin>
			<xmax>352xmax>
			<ymax>498ymax>
		bndbox>
	object>
annotation>

2. VOC数据集的dataloader的构建

  1. 数据集准备:使用一个预处理的脚本,可以提前对xml文件进行解析,将其转换为json格式的文件,便于后面再训练时,能够更便捷的获取相应的标签信息。

这样的处理取决于自己,相较于xml格式而言,json格式更便于解析和读取相应的字段信息。
练习中便于后面再训练时,能够更便捷的获取相应的标签信息。

练习中可以通过运行create_data_lists.py脚本,使用utils.py中的create_data_lists方法实现:


"""python
    create_data_lists
"""
from utils import create_data_lists

if __name__ == '__main__':
    # voc07_path,voc12_path为我们训练测试所需要用到的数据集,output_folder为我们生成构建dataloader所需文件的路径
    # 参数中涉及的路径以个人实际路径为准,建议将数据集放到dataset目录下,和教程保持一致
    create_data_lists(voc07_path='../../../dataset/VOCdevkit/VOC2007',
                      voc12_path='../../../dataset/VOCdevkit/VOC2012',
                      output_folder='../../../dataset/VOCdevkit')

  • 将下载好的数据解压放到路径的dataset目录中,并运行脚本,便生成了相应的json文件,用于后面的训练中。
  • 解析xml文件主要是通过parse_annotation函数实现:
"""
    xml文件解析
"""

import json
import os
import torch
import random
import xml.etree.ElementTree as ET    #解析xml文件所用工具
import torchvision.transforms.functional as FT

#GPU设置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Label map
#voc_labels为VOC数据集中20类目标的类别名称
voc_labels = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
              'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')

#创建label_map字典,用于存储类别和类别索引之间的映射关系。比如:{1:'aeroplane', 2:'bicycle',......}
label_map = {k: v + 1 for v, k in enumerate(voc_labels)}
#VOC数据集默认不含有20类目标中的其中一类的图片的类别为background,类别索引设置为0
label_map['background'] = 0

#将映射关系倒过来,{类别名称:类别索引}
rev_label_map = {v: k for k, v in label_map.items()}  # Inverse mapping

#解析xml文件,最终返回这张图片中所有目标的标注框及其类别信息,以及这个目标是否是一个difficult目标
def parse_annotation(annotation_path):
    #解析xml
    tree = ET.parse(annotation_path)
    root = tree.getroot()

    boxes = list()    #存储bbox
    labels = list()    #存储bbox对应的label
    difficulties = list()    #存储bbox对应的difficult信息

    #遍历xml文件中所有的object,前面说了,有多少个object就有多少个目标
    for object in root.iter('object'):
        #提取每个object的difficult、label、bbox信息
        difficult = int(object.find('difficult').text == '1')
        label = object.find('name').text.lower().strip()
        if label not in label_map:
            continue
        bbox = object.find('bndbox')
        xmin = int(bbox.find('xmin').text) - 1
        ymin = int(bbox.find('ymin').text) - 1
        xmax = int(bbox.find('xmax').text) - 1
        ymax = int(bbox.find('ymax').text) - 1
        #存储
        boxes.append([xmin, ymin, xmax, ymax])
        labels.append(label_map[label])
        difficulties.append(difficult)

    #返回包含图片标注信息的字典
    return {'boxes': boxes, 'labels': labels, 'difficulties': difficulties}
  • 运行脚本后解析出来的json文件部分内容如下。会发现仅将最重要的目标信息解析到出来,便于后面的训练测试使用:
[{
	"boxes": [
		[262, 210, 323, 338],
		[164, 263, 252, 371],
		[4, 243, 66, 373],
		[240, 193, 294, 298],
		[276, 185, 311, 219]
	],
	"labels": [9, 9, 9, 9, 9],
	"difficulties": [0, 0, 1, 0, 1]
}, {
	"boxes": [
		[140, 49, 499, 329]
	],
	"labels": [7],
	"difficulties": [0]
}, {
	"boxes": [
		[68, 171, 269, 329],
		[149, 140, 228, 283],
		[284, 200, 326, 330],
		[257, 197, 296, 328]
	],
	"labels": [13, 15, 15, 15],
	"difficulties": [0, 0, 0, 0]
}]
  • 整个数据的准备流程如下:
    DataWhale计算机视觉实践(目标检测)Task01_第7张图片
  1. 构建dataloader
  • 定义dataloader:
    #train_dataset和train_loader的实例化
    # 实例化PascalVOCDataset类
    train_dataset = PascalVOCDataset(data_folder,
                                     split='train',
                                     keep_difficult=keep_difficult)

    # 将train_dataset传入DataLoader得到train_loader                      
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
                                               collate_fn=train_dataset.collate_fn, num_workers=workers,
                                               pin_memory=True)  # note that we're passing the collate function here

  • 其中,PascalVOCDataset的定义如下,主要继承了torch.utils.data.Dataset,然后重写了__init__ , getitem, len 和 collate_fn 四个方法:
"""python
    PascalVOCDataset具体实现过程
"""
import torch
from torch.utils.data import Dataset
import json
import os
from PIL import Image
from utils import transform


class PascalVOCDataset(Dataset):
    """
    A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches.
    """

    #初始化相关变量
    #读取images和objects标注信息
    def __init__(self, data_folder, split, keep_difficult=False):
        """
        :param data_folder: 数据目录。folder where data files are stored
        :param split: 数据分割为训练集和测试集。split, one of 'TRAIN' or 'TEST'
        :param keep_difficult: 保留或放弃难以检测的对象。keep or discard objects that are considered difficult to detect?
        """
        self.split = split.upper()    #保证输入为纯大写字母,便于匹配{'TRAIN', 'TEST'}

        assert self.split in {'TRAIN', 'TEST'}

        self.data_folder = data_folder
        self.keep_difficult = keep_difficult

        # Read data files
        with open(os.path.join(data_folder, self.split + '_images.json'), 'r') as j:
            self.images = json.load(j)
        with open(os.path.join(data_folder, self.split + '_objects.json'), 'r') as j:
            self.objects = json.load(j)

        assert len(self.images) == len(self.objects)

    #循环读取image及对应objects
    #对读取的image及objects进行tranform操作(数据增广)
    #返回PIL格式图像,标注框,标注框对应的类别索引,对应的difficult标志(True or False)
    def __getitem__(self, i):
        # Read image
        #*需要注意,在pytorch中,图像的读取要使用Image.open()读取成PIL格式,不能使用opencv
        #*由于Image.open()读取的图片是四通道的(RGBA),因此需要.convert('RGB')转换为RGB通道
        image = Image.open(self.images[i], mode='r')
        image = image.convert('RGB')

        # Read objects in this image (bounding boxes, labels, difficulties)
        # 读取图片对应的对象信息
        objects = self.objects[i]
        boxes = torch.FloatTensor(objects['boxes'])  # (n_objects, 4)
        labels = torch.LongTensor(objects['labels'])  # (n_objects)
        difficulties = torch.ByteTensor(objects['difficulties'])  # (n_objects)

        # Discard difficult objects, if desired
        #如果self.keep_difficult为False,即不保留difficult标志为True的目标
        #那么这里将对应的目标删去
        if not self.keep_difficult:
            boxes = boxes[1 - difficulties]
            labels = labels[1 - difficulties]
            difficulties = difficulties[1 - difficulties]

        # Apply transformations
        #对读取的图片应用transform
        image, boxes, labels, difficulties = transform(image, boxes, labels, difficulties, split=self.split)

        return image, boxes, labels, difficulties

    #获取图片的总数,用于计算batch数
    def __len__(self):
        return len(self.images)

    #我们知道,我们输入到网络中训练的数据通常是一个batch一起输入,而通过__getitem__我们只读取了一张图片及其objects信息
    #如何将读取的一张张图片及其object信息整合成batch的形式呢?
    #collate_fn就是做这个事情,
    #对于一个batch的images,collate_fn通过torch.stack()将其整合成4维tensor,对应的objects信息分别用一个list存储
    def collate_fn(self, batch):
        """
        Since each image may have a different number of objects, we need a collate function (to be passed to the DataLoader).
        This describes how to combine these tensors of different sizes. We use lists.
        Note: this need not be defined in this Class, can be standalone.
        :param batch: an iterable of N sets from __getitem__()
        :return: a tensor of images, lists of varying-size tensors of bounding boxes, labels, and difficulties
        """

        images = list()
        boxes = list()
        labels = list()
        difficulties = list()

        for b in batch:
            images.append(b[0])
            boxes.append(b[1])
            labels.append(b[2])
            difficulties.append(b[3])

        #(3,224,224) -> (N,3,224,224)
        images = torch.stack(images, dim=0)

        return images, boxes, labels, difficulties  # tensor (N, 3, 224, 224), 3 lists of N tensors each

  • 数据增强:

通过数据增强,可以提升网络精度和泛化能力。
transform数据增强实现代码如下:

"""python
    transform操作是训练模型中一项非常重要的工作,
    其中不仅包含数据增强以提升模型性能的相关操作,
    也包含如数据类型转换(PIL to Tensor)、归一化(Normalize)这些必要操作。
"""
import json
import os
import torch
import random
import xml.etree.ElementTree as ET
import torchvision.transforms.functional as FT

"""
可以看到,transform分为TRAIN和TEST两种模式,以本实验为例:

在TRAIN时进行的transform有:
1.以随机顺序改变图片亮度,对比度,饱和度和色相,每种都有50%的概率被执行。photometric_distort
2.扩大目标,expand
3.随机裁剪图片,random_crop
4.0.5的概率进行图片翻转,flip
*注意:a. 第一种transform属于像素级别的图像增强,目标相对于图片的位置没有改变,因此bbox坐标不需要变化。
         但是2,3,4,5都属于图片的几何变化,目标相对于图片的位置被改变,因此bbox坐标要进行相应变化。

在TRAIN和TEST时都要进行的transform有:
1.统一图像大小到(224,224),resize
2.PIL to Tensor
3.归一化,FT.normalize()

注1: resize也是一种几何变化,要知道应用数据增强策略时,哪些属于几何变化,哪些属于像素变化
注2: PIL to Tensor操作,normalize操作必须执行
"""

def transform(image, boxes, labels, difficulties, split):
    """
    Apply the transformations above.
    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :param labels: labels of objects, a tensor of dimensions (n_objects)
    :param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
    :param split: one of 'TRAIN' or 'TEST', since different sets of transformations are applied
    :return: transformed image, transformed bounding box coordinates, transformed labels, transformed difficulties
    """

    #在训练和测试时使用的transform策略往往不完全相同,所以需要split变量指明是TRAIN还是TEST时的transform方法
    assert split in {'TRAIN', 'TEST'}

    # Mean and standard deviation of ImageNet data that our base VGG from torchvision was trained on
    # see: https://pytorch.org/docs/stable/torchvision/models.html
    #为了防止由于图片之间像素差异过大而导致的训练不稳定问题,图片在送入网络训练之间需要进行归一化
    #对所有图片各通道求mean和std来获得
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    new_image = image
    new_boxes = boxes
    new_labels = labels
    new_difficulties = difficulties

    # Skip the following operations for evaluation/testing
    if split == 'TRAIN':
        # A series of photometric distortions in random order, each with 50% chance of occurrence, as in Caffe repo
        # 以随机的顺序改变图片的亮度、对比度、饱和度和色相(都有50%的概率)
        new_image = photometric_distort(new_image)

        # Convert PIL image to Torch tensor
        # 将图片转换为tensor
        new_image = FT.to_tensor(new_image)

        # Expand image (zoom out) with a 50% chance - helpful for training detection of small objects
        # Fill surrounding space with the mean of ImageNet data that our base VGG was trained on
        if random.random() < 0.5:
            # 扩大目标
            new_image, new_boxes = expand(new_image, boxes, filler=mean)

        # Randomly crop image (zoom in)
        # 随机裁剪图片
        new_image, new_boxes, new_labels, new_difficulties = random_crop(new_image, new_boxes, new_labels,
                                                                         new_difficulties)

        # Convert Torch tensor to PIL image
        # 将tensor转换为图片格式PIL
        new_image = FT.to_pil_image(new_image)

        # Flip image with a 50% chance
        if random.random() < 0.5:
            # 以0.5的概率进行图片翻转
            new_image, new_boxes = flip(new_image, new_boxes)

    # Resize image to (224, 224) - this also converts absolute boundary coordinates to their fractional form
    # 统一图片的大小到(224,224)
    new_image, new_boxes = resize(new_image, new_boxes, dims=(224, 224))

    # Convert PIL image to Torch tensor
    # PIL转换为tensor
    new_image = FT.to_tensor(new_image)

    # Normalize by mean and standard deviation of ImageNet data that our base VGG was trained on
    # 归一化
    new_image = FT.normalize(new_image, mean=mean, std=std)

    return new_image, new_boxes, new_labels, new_difficulties


  • 构建DataLoader:
"""python
    DataLoader
"""
#参数说明:
#在train时一般设置shufle=True打乱数据顺序,增强模型的鲁棒性
#num_worker表示读取数据时的线程数,一般根据自己设备配置确定(如果是windows系统,建议设默认值0,防止出错)
#pin_memory,在计算机内存充足的时候设置为True可以加快内存中的tensor转换到GPU的速度
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
                                           collate_fn=train_dataset.collate_fn, num_workers=workers,
                                           pin_memory=True)  # note that we're passing the collate function here

你可能感兴趣的:(深度学习,深度学习,pytorch,神经网络)