- 云原生边缘计算:重塑分布式智能的时空边界
桂月二二
云原生边缘计算分布式
引言:算力向数据源头迁移的革命特斯拉自动驾驶系统每小时产生20TB边缘数据,时延要求低于50ms。中国移动5G边缘云实现ARPU值提升38%,华为云IEF平台将工业质检响应速度提升至15ms以内。ABIResearch预测2026年边缘AI芯片市场规模达520亿美元,KubeEdge管理边缘节点数突破千万级,单节点资源开销仅为K8s的1/8。一、边缘计算架构范式演进1.1技术架构对比矩阵特征维度中
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- 特斯拉 FSD 算法深度剖析:软件层面全解读
python算法(魔法师版)
算法机器学习人工智能深度学习神经网络计算机视觉
一、引言特斯拉的FSD(FullSelf-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉FSD所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的FSD算法全景图。二、特斯拉FSD系统概述特斯拉FSD系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI自动驾驶:2025有戏,Uber受益先于特斯拉
gange574
人工智能自动驾驶机器学习AI写作大数据aiAI编程
自动驾驶:2025有戏,Uber受益先于特斯拉近期消息,优步将与Waymo在奥斯汀推出合作服务(夏季将在亚特兰大跟进)。在过去一段时间,市场情绪似乎已经转变,认为自动驾驶汽车的推广将越来越需要需求端平台,而优步作为最大的此类平台处于有利地位。比亚迪(BYD)的公告也在投资者心中凸显了一个重要观点:完全自动驾驶(FSD)市场越分散,优步作为最大的需求聚合商的地位就越有利。Techcrunch报道称,
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 深度 | 车载语音群雄并起共争智能座舱新高地
数据堂官方账号
分享人工智能语音识别
不论是苹果公司iOS系统中的智能语言助手“Siri”,还是微软Windows系统中的“Cortana”,智能语音交互早已融入我们生活之中。随着汽车产业的发展,用户消费形态的改变,自动驾驶、智能座舱、新能源这些概念已经逐渐落地成为现实,智能语音交互与汽车之间也擦出了别样的火花。由于驾驶汽车无法解放双手,对于人机互动的需求,则更多需要通过语言来实现。因此,结合了人工智能的车载语音交互系统作为汽车智能网
- [自动驾驶-传感器融合] 多激光雷达的外参标定
simba丶小小程序猿
自动驾驶自动驾驶人工智能机器学习
文章目录引言外参标定原理ICP匹配示例参考文献引言多激光雷达系统通常用于自动驾驶或机器人,每个雷达的位置和姿态不同,需要将它们的数据统一到同一个坐标系下。多激光雷达外参标定的核心目标是通过计算不同雷达坐标系之间的刚性变换关系(旋转矩阵RRR和平移向量ttt),将多个雷达的点云数据统一到同一坐标系下。具体需求包括:数据融合:消除多雷达间的位姿差异,生成全局一致的点云。减少累积误差:避免多传感器数据因
- 自动驾驶---Perception之大模型应用
智能汽车人
自动驾驶人工智能机器学习
1背景自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:《自动驾驶---Perception之IPM图和BEV图》《自动驾驶---P
- 自动驾驶---LSTM模型用于轨迹预测
智能汽车人
自动驾驶lstm人工智能自然语言处理
1前言在下面几篇博客中,笔者简单介绍过Transformer,Transformer的内部结构虽然比较清晰,但对于入门者来说还是复杂了一些。《人工智能---什么是Transformer?》《自动驾驶---视觉Transformer的应用》《自动驾驶---Parking端到端架构》中介绍的轨迹Decoder模块本篇博客和读者朋友们探讨一种比较早的模型(理解起来也相对容易一些):LSTM(LongSh
- 深度学习实战:用TensorFlow构建高效CNN的完整指南
芯作者
DD:日记深度学习
一、为什么每个开发者都要掌握CNN?在自动驾驶汽车识别路标的0.1秒里,在医疗AI诊断肺部CT片的精准分析中,甚至在手机相册自动分类宠物的日常场景里,卷积神经网络(CNN)正悄然改变着我们的世界。本文将以工业级实践标准,带您从零构建一个在CIFAR-10数据集上达到90%+准确率的CNN模型,深入解析TensorFlow2.x的最新特性,并揭秘模型优化的七大核心策略。[外链图片转存失败,源站可能有
- 自动驾驶---打造自动驾驶系统之环境准备(一)
智能汽车人
从零打造自动驾驶算法仿真系统自动驾驶人工智能汽车仿真
各位读者朋友,本次打造的自动驾驶系统仿真系统,涉及感知,预测,规控等多个模块(以规控算法为主),同时可自定义相关扩展(部署&开发自身感兴趣的算法),非常便捷。笔者在此系列中开发的规控算法主要依据专栏《自动驾驶Planning决策规划》中的章节逐步搭建,后续实践系列涉及的博客包括但不局限于以下内容:《打造自动驾驶系统之环境准备(一)》《打造自动驾驶系统之定位模块开发(二)》《打造自动驾驶系统之导航模
- 智能驾驶:驶向未来的变革之路
测试者家园
人工智能质量效能智能驾驶人工智能质量效能机器人智能驾驶智能汽车无人汽车无人驾驶
在科技迅猛发展的今天,智能驾驶作为人工智能与交通运输深度融合的产物,正引领着汽车行业的革命性变革。从最初的驾驶辅助系统到如今的高度自动驾驶,智能驾驶技术的演进不仅改变了人们的出行方式,也对社会经济、法律法规等多个层面产生了深远影响。一、智能驾驶的技术演进与现状1.技术等级划分根据国际自动机工程师学会(SAE)的定义,自动驾驶技术被分为L0至L5六个等级:L0级:无自动化,完全由人类驾驶员控制。L1
- 手把手教你学simulink实例--基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学SimulinkSIMULINK
目录基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真1.背景介绍1.1项目背景随着自动驾驶技术的快速发展,智能驾驶辅助系统(ADAS,AdvancedDriverAssistanceSystems)在电动汽车中的应用越来越广泛。这些系统通过感知环境、规划路径和控制车辆来提高
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- MATLAB中的A*算法路径规划实战指南
MCPlayer542
本文还有配套的精品资源,点击获取简介:MATLAB是进行路径规划的强大工具,尤其适用于机器人导航和自动驾驶系统。文章详细介绍了如何使用MATLAB实现A算法进行二维和三维路径规划,涵盖了算法原理、环境地图构建、启发式函数设计、以及路径搜索的步骤。文章附带MATLAB代码示例,帮助读者通过实际操作深入理解A算法在路径规划中的应用。1.MATLAB路径规划应用概述路径规划作为移动机器人、无人机和其他自
- 深度学习算法模型:从原理到未来
YDH_AlwaysRunning
深度学习
近年来,人工智能(AI)技术以前所未有的速度改变着人类生活,而深度学习的崛起无疑是这场技术革命的核心驱动力。从手机中的语音助手到医学影像的智能诊断,从自动驾驶汽车到生成式AI创作的诗歌和画作,深度学习算法模型正逐渐渗透到社会的每个角落。本文将从基本原理出发,解析典型模型的运作机制,探讨其应用现状与发展趋势,带您全面认识这一改变世界的技术。一、深度学习的基本原理:让机器学会"思考"1.1神经网络的生
- 自动驾驶FSD技术的核心算法与软件实现
python算法(魔法师版)
自动驾驶算法人工智能机器学习深度学习神经网络
引言:FSD技术的定义与发展背景在当今快速发展的科技领域中,自动驾驶技术已经成为全球关注的焦点之一。其中,“FSD”(FullSelf-Driving,全自动驾驶)代表了这一领域的最高目标——让车辆在无需人类干预的情况下完成所有驾驶任务。特斯拉公司推出的FSD系统是目前最具代表性的产品之一,它不仅融合了先进的硬件设备,还依赖于复杂的软件算法来实现环境感知、路径规划和决策控制等功能。本文将从软件层面
- 《DataWorks:为人工智能算法筑牢高质量数据根基》
人工智能深度学习
在当今数字化时代,人工智能(AI)技术的迅猛发展深刻地改变着各个行业的面貌。从智能推荐系统到医疗影像诊断,从自动驾驶到自然语言处理,AI正以前所未有的速度渗透到我们生活和工作的方方面面。而在这一系列AI应用的背后,高质量的训练数据是其能够发挥强大效能的关键所在。就如同巧妇难为无米之炊,没有优质的数据,再先进的AI算法也难以施展拳脚。阿里巴巴的DataWorks,作为一款强大的大数据开发治理平台,在
- PCB 在自动驾驶设备中的多元化应用
华高电路
自动驾驶人工智能机器学习大数据pcb工艺制造ai
在自动驾驶技术飞速发展的当下,PCB作为关键的基础部件,深度融入自动驾驶设备的各个系统,为车辆的安全、智能运行提供了有力支撑一、传感器系统作为核心枢纽(一)视觉感知摄像头适配:自动驾驶汽车凭借多个不同视角的摄像头,实现360度环境感知;PCB在摄像头模组里扮演“幕后英雄”,以常见的CMOS图像传感器为例,它需与PCB紧密相连,借助PCB上精细布线,将捕捉到的图像数据高速传输至车载计算单元;同时,P
- 自动驾驶平行仿真(基础课程一)
Yours monkey brother
自动驾驶人工智能机器学习
一、线性回归每当我们想预测一个数值时,就会弹出回归问题价值。常见示例包括预测价格(房屋、股票、等)、预测住院时间(对于住院患者)、预测需求(零售额)等等。并非每个预测问题是经典回归的一种。稍后,我们将引入分类问题,其目标是预测一组类别的成员资格。作为一个运行示例,假设我们希望估计房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以年)。要开发一个预测房价的模型,我们需要得到我们亲身体验数据,包
- 端到端自动驾驶——cnn网络搭建
白云千载尽
自动驾驶cnn人工智能ROS算法神经网络机器学习
论文参考:https://arxiv.org/abs/1604.07316demo今天主要来看一个如何通过图像直接到控制的自动驾驶端到端的项目,首先需要配置好我的仿真环境,下载软件udacity:https://d17h27t6h515a5.cloudfront.net/topher/2016/November/5831f3a4_simulator-windows-64/simulator-win
- 【路径规划】快速探索随机树算法,用于自动驾驶汽车的路径规划,绕过静态障碍物(Matlab实现)
长安程序猿
算法自动驾驶汽车
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述快速探索随机树(Rapidly-exploringRandomTree,RRT)算法是一种常用于路径规划的概率型算法,特别适用于自动驾驶汽车的路径规划,能够有效地绕过静态障碍物。RRT算法通过随机采样和快速扩展树结
- 随机树算法 自动驾驶汽车的路径规划 静态障碍物(Matlab)
Luis Li 的猫猫
自动驾驶汽车人工智能算法计算机视觉
随着自动驾驶技术的蓬勃发展,安全、高效的路径规划成为核心挑战之一。快速探索随机树(RRT)算法作为一种强大的路径搜索策略,为自动驾驶汽车在复杂环境下绕过静态障碍物规划合理路径提供了有效解决方案。RRT算法基于随机采样思想构建树形结构。从初始状态点出发,在车辆的状态空间内反复随机采样,将新采样点与已有树中的节点依据距离、可达性等规则进行连接拓展,逐步生长形成一棵能够覆盖状态空间大部分区域的树,向着目
- 顶配版SAM:由分割一切迈向感知一切
猛码Memmat
prompt人工智能计算机视觉语义分割prompt
文章目录0.前言1.论文地址1.1项目&代码1.2模型地址1.3Demo2.模型介绍2.1亮点2.2方法3.量化结果、可视化展示Reference0.前言现有的视觉分割基础模型,如SAM及其变体,集中优势在形状、边缘等初级定位感知,或依赖外部模型完成更高级的语义理解任务。然而,迈向更高效的视觉感知则需要在单个模型中实现全面的视觉理解,以助力于更广泛的应用场景,如自动驾驶、安防监控、遥感以及医学图像
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc