YOLO v5 的 PyTorch环境
pip3 install --user torch==1.7.0 torchvision==0.8.1 seaborn==0.11.0 tqdm==4.56.0
YoloV5的PyTorch模型转换ONNX模型:
参考:
将PyTorch版本由1.7.0下降为1.6.0
pip install torch==1.6.0 torchvision==0.7.0
生成ONNX模型
python models/export.py --weights mydata/models/best-m-20210121.pt --img 640 --batch 1
ONNX版本
onnx==1.8.0
onnxruntime==1.4.0
ONNX的部署参考:https://docs.microsoft.com/zh-cn/azure/machine-learning/concept-onnx
修改models/export.py,将export修改为False,输出4个参数。
model.model[-1].export = False
四个参数参考:
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
修改,将auto设置为False,将scaleFill设置为True。
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
训练YoloV5 PyTorch模型,https://github.com/ultralytics/yolov5/
nohup python3 -u train.py --img-size 640 --batch-size 64 --epochs 100000 --data ./data/oral_counting.yaml --cfg ./models/yolov5x.my.yaml --weights ./mydata/models/yolov5x.pt > nohup.out &
验证脚本:
python3 val.py --img-size 640 --batch-size 64 --data ./data/oral_counting.yaml --weights ./mydata/models/best_20210831.pt
m版本:
nohup python3 -u train.py --img-size 640 --batch-size 32 --epochs 300 --data ./data/ps.yaml --cfg ./models/yolov5m.my.yaml --weights ./mydata/models/yolov5m.pt > nohup.20200120.out &
m版本v3:
nohup python3 -u train.py --img-size 1024 --batch-size 32 --epochs 300 --data ./data/ps.v3.yaml --cfg ./models/yolov5m.my.yaml --weights ./mydata/models/yolov5m.pt > nohup.20200121.v3.out &
s版本:
nohup python3 -u train.py --img-size 640 --batch-size 40 --epochs 300 --data ./data/ps.yaml --cfg ./models/yolov5s.my.yaml --weights ./mydata/models/yolov5s.pt > nohup.20200120-s.out &
依赖库
torch==1.7.0
torchvision==0.8.1
seaborn==0.11.0
tqdm==4.56.0
pip3 install --user torch==1.7.0 torchvision==0.8.1 seaborn==0.11.0 tqdm==4.56.0
失败
GitHub:https://github.com/hunglc007/tensorflow-yolov4-tflite
TensorFlow版本
pip list | grep 'tensorflow'
tensorflow 2.1.0
tensorflow-estimator 2.1.0
数据格式,参考data/dataset/val2014.txt
文件:
图像服务器地址(xxx.jpg) x_min,y_min,x_max,y_max,label x_min,y_min,x_max,y_max,label
修改配置文件core/config.py
:替换训练和测试的数据文件,还有标签。