- AI大模型零基础金融人如何一周自学大模型,从零基础到入门,看这篇就够了!
冻感糕人~
人工智能金融AI大模型LLM大模型技术大模型学习路线大模型基础
前几天参加了字节跳动在上海举办的火山引擎Force原动力大会,OpenAI也连续开了12天发布会,最近堪称科技界的春晚了。如果说2022年ChatGPT横空出世把人工智能的发展带上了一个新的台阶,那么2024年末,大模型对工作、生活的全面“侵入”让我们越来越接近库兹韦尔所描述的那个奇点时刻。作为金融民工,我们想通过这篇文章讲讲从用户的角度如何一周快速掌握大模型,以及为什么我建议每一个金融从业人员(
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- 目标检测项目
sho_re
神经网络人工智能pytorch目标检测
·识别图片中有哪些物体并且找到物体的存在位置多任务:位置+类别目标种类与数量繁多的问题目标尺度不均的问题遮挡、噪声等外部环境干扰VOC数据集:PASCALVOC挑战赛(ThePASCALVisualObjectClasses)是一个世界级的计算机视觉挑战赛。4大类,20小类VOC2007:9963图片/24640目标VOC2012:23080图片/54900目标·COCO数据集:起源于微软2014
- 如何通过深度学习优化操作系统中的故障诊断与恢复机制
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3深度学习人工智能
如何通过深度学习优化操作系统中的故障诊断与恢复机制(副标题:智能监控、自适应诊断与自动恢复——操作系统故障自愈的新方向)摘要随着现代操作系统在多核、高并发和分布式环境中的广泛应用,系统故障及其恢复问题日益成为影响系统稳定性和业务连续性的关键挑战。传统的故障诊断方法依赖于预设规则和人工干预,难以应对复杂多变的故障场景。本文提出了一种基于深度学习的故障诊断与恢复机制,通过对大量历史日志、监控数据和故障
- Qt的QGraphics View的使用
水瓶丫头站住
Qtqt信息可视化开发语言
QGraphicsView框架是Qt中用于管理和渲染大量2D图形对象的强大工具,适合构建绘图软件、游戏编辑器、数据可视化等场景。以下是关键使用步骤和示例:1.核心组件QGraphicsScene:场景容器,管理所有图形项(Item)的层级、坐标和事件。QGraphicsView:视图组件,用于显示场景内容,支持缩放、旋转、滚动等操作。QGraphicsItem:所有图形项的基类(如矩形、椭圆、自定
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- R语言学习实例:使用R进行数据可视化
PixelCoder
信息可视化r语言学习R语言
R语言学习实例:使用R进行数据可视化R语言是一种功能强大且广泛使用的统计分析和数据可视化工具。在本实例中,我们将使用R语言来创建一些常见的数据可视化图表,包括散点图、柱状图和折线图。我们将展示如何使用R的基本绘图功能和一些常用的绘图库来生成这些图表。散点图是一种用于显示两个变量之间关系的图表。我们可以使用R的基本绘图功能来创建散点图。下面是一个示例代码,展示如何使用R创建散点图:#创建示例数据x<
- Raspberry Pi图形组件深入解析与应用示例
嵌入式Jerry
Linux服务器linux运维pythonandroid
一、概述RaspberryPi的图形组件集中在Yocto项目的meta-raspberrypi层中的recipes-graphics目录下。此目录不仅定义了树莓派硬件优化的图形库和驱动,也提供了丰富的配置示例和具体实现方案,涵盖了从基础绘图、3D渲染到视频加速及窗口管理系统。二、目录结构与核心作用1.图形库优化cairo文件:cairo_%.bbappend作用:针对树莓派平台特定优化的2D图形矢
- 关于两次项目的学习感悟
罗婕斯特
大数据
经过这两次项目,我学到了以下几点:1.模块化与结构化思维:代码展示了如何将深度学习任务分解为多个模块(如数据加载、模型定义、训练循环、评估等)。这种模块化的思维方式不仅适用于编程,也可以应用于解决复杂问题时的结构化思考。2.细节决定成败:代码中涉及了许多细节,如数据预处理、学习率调整、损失函数的选择等。这些细节对模型的最终性能有着重要影响。这提醒我们,在解决实际问题时,细节往往决定成败,需要耐心和
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 新的一年,新的感受和成长
是小天才哦
#高职生闲谈服务器
本人现在是工作快2年的打工人,我是前年7月份毕业的大专生。其实我在大学刚开始的时候因为体验过社会的毒打,所以发誓一定要好好学习,而我也的确好好学习了,在学校2年时间里,大部分时间都是在图书馆里面看书,主要为啥天天在图书馆很大原因是本专业的课程自己不是非常喜欢(我是人工智能专业,人工智能专业大专学历出来基本也是打框的无聊活)所以我就自己学习了系统运维方向,这个过程也考取了RHCE认证,也是因为这个认
- Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务
AGI大模型与大数据研究院
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:构建序列到序列(Seq2Seq)模型处理翻译任务1.背景介绍1.1问题的由来翻译是跨语言沟通的重要桥梁,随着全球化进程的加速,翻译需求日益增长。传统的机器翻译方法主要依赖于规则和统计方法,如基于短语的翻译、基于统计的机器翻译等。然而,这些方法难以处理复杂的语言现象,翻译质量参差不齐。近年来,随着深度学习技术的快速发展,基于神经网络序列到序列(Sequence-to-Seq
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 绘图神器draw.io下载
独木人生
IT工具draw.io
你可以在draw.io的官方网站(https://www.draw.io/)上下载绘图神器draw.io。官方网站提供了针对不同操作系统的下载选项,包括Windows、Mac、Linux等。只需点击对应的操作系统下载链接,然后根据提示进行安装即可。
- 【大模型开发】深入解析 DeepSpeed:原理、核心技术与示例代码
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发大模型微调deepseekdeepspeedpython人工智能pytorch
深入解析DeepSpeed:原理、核心技术与示例代码DeepSpeed是由微软开源的高性能深度学习训练优化引擎,专注于帮助研究人员和工程团队在分布式环境中高效地训练超大规模模型。其核心目标是提供高吞吐、低内存占用、低成本的分布式训练方案,让数千亿甚至万亿级参数模型的训练成为可能。本文将从DeepSpeed的核心原理、关键组件、代码示例及实现过程详解等方面做详细阐述,帮助读者更好地理解并使用Deep
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 通义万相2.1:AI视频生成迎来“质变”,运镜、文字、物理规律全面突破
that's boy
人工智能通义万象2.1chatgptopenaiqwenAI作画AI编程
AI视频生成,从“能看”到“惊艳”的跨越在人工智能的浪潮中,AI视频生成无疑是最受瞩目的领域之一。从最初的简单动画到如今的逼真模拟,AI视频生成技术正在快速发展,不断刷新人们的认知。近日,阿里云旗下通义万相视频生成模型宣布了2.1版本的重磅升级,不仅在性能上实现了全面提升,更在运镜、文字生成、物理规律模拟等方面取得了突破性进展,让AI视频生成真正进入了“质变”的新阶段。通义万相2.1的出现,不仅是
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- 基于PyTorch的深度学习6——数据处理工具箱2
Wis4e
深度学习pytorch人工智能
torchvision有4个功能模块:model、datasets、transforms和utils。主要介绍如何使用datasets的ImageFolder处理自定义数据集,以及如何使用transforms对源数据进行预处理、增强等。下面将重点介绍transforms及ImageFolder。transforms提供了对PILImage对象和Tensor对象的常用操作。1)对PILImage的常
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- LangChain大模型应用开发指南-大模型Memory不止于对话
喝不喝奶茶丫
langchain人工智能大模型大模型应用AI大模型Memory大语言模型
上节课,我我为您介绍了LangChain中最基本的链式结构,以及基于这个链式结构演化出来的ReAct对话链模型。今天我将由简入繁,为大家拆解LangChain内置的多种记忆机制。本教程将详细介绍这些记忆组件的工作原理、特性以及使用方法。【一一AGI大模型学习所有资源获取处一一】①人工智能/大模型学习路线②AI产品经理资源合集③200本大模型PDF书籍④超详细海量大模型实战项目⑤LLM大模型系统学习
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- 深度学习与普通神经网络有何区别?
是理不是里
深度学习神经网络人工智能
深度学习与普通神经网络的主要区别体现在以下几个方面:一、结构复杂度普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。深度学习:强调通过5层以上的深度架构逐级抽象数据特征,包含多层神经网络,层数可能达到几十层甚至上百层。例如,ResNet(2015)包含152个卷积层。二、特征学习方式普通神经网络:特征提取通常依赖人工设计,需要领域专家的经验。这意味着在处
- AI 技术 引入 RTK(实时动态定位)系统,可以实现智能化管理和自动化运行
小赖同学啊
人工智能低空经济人工智能自动化运维
将AI技术引入RTK(实时动态定位)系统,可以实现智能化管理和自动化运行,从而提高系统的精度、效率和可靠性。以下是AI技术在RTK系统中的应用实例:一、AI技术在RTK系统中的应用场景1.整周模糊度快速解算问题:RTK的核心是解算载波相位的整周模糊度,传统方法耗时较长。AI解决方案:使用深度学习模型(如卷积神经网络CNN)预测整周模糊度。通过历史数据训练模型,实现快速解算。实例:某无人机公司使用A
- AI 驱动的软件测试革命:从自动化到智能化的进阶之路
綦枫Maple
AI+软件测试人工智能自动化运维
引言:软件测试的智能化转型浪潮在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注入了新动能,通过机器学习、深度学习、自然语言处理等技术,测试流程正从“被动验证”向“主动预防”演进。本文将深入探讨AI与软件测试的融合路径,结合技术原理、工具实践与行业趋势,为读者呈现一幅
- 使用Activeloop Deep Lake构建深度学习数据仓库与向量存储
dgay_hua
深度学习人工智能python
技术背景介绍随着深度学习技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。ActiveloopDeepLake是专为深度学习设计的数据仓库,可以作为向量存储使用,支持多模态数据的存储和处理,并且可以直接用于细调大型语言模型(LLMs)。此外,它还提供自动版本控制,无需依赖其他服务,兼容主要云服务提供商
- 大语言模型原理基础与前沿 挑战与机遇
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿挑战与机遇1.背景介绍大语言模型(LargeLanguageModels,LLMs)是近年来人工智能领域的一个重要突破。它们通过深度学习技术,特别是基于变换器(Transformer)架构的模型,能够在自然语言处理(NLP)任务中表现出色。大语言模型的出现不仅推动了学术研究的发展,也在实际应用中展现了巨大的潜力。1.1大语言模型的起源大语言模型的起源可以追溯到早期的统计语言
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc