- 国科大-算法中的最优化方法-林
手板心里煎鱼吃
算法性能优化matlab
2024国科大-算法中的最优化方法-林刚考完,把复习资料也发出来,学弟学妹可以参考学习一下。总的来说不是很难,由于开卷转闭卷的原因,大部分都是原题,在ppt以及网上都能找到。考过内容汇总:A前面是几个填空题,主要考察凸函数,拟凸函数,单峰函数这些的图像判断,以及通过等高线图找到梯度方向(第一个ppt上的最后一页的那个图)。填空题主要就是考察这些基本概念。第二大题给了4个题目,让判断是属于哪种规划(
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 机器学习-梯度下降法
小旺不正经
人工智能机器学习人工智能python
不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数并不是所有函数都有唯一的极值点解决方法:多次运行,随机化初始点梯度下降法的初始点也是一个超参数代码演示importnumpyasnpimportmatplotlib.pyplotaspltplot_x=np.linspace(-1.,6.,141)plot_y=(plot_x-2.5)**2-1.p
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化方法之梯度下降法和牛顿法
thatway1989
算法分析机器学习深度学习线性代数
大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。最常见的最优化方法有梯度下降法、牛顿法。最优化方法:最优化方法,即寻找函数极值点的数值方法。通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从x.k移动到下一个点x.k+1,直至到达函数的极值点。这些规则一般会利用一阶导数信息即梯度,或者二阶导数信息即Hessian矩阵。算
- 进化计算——求解优化问题(一)
_hermit:
计算智能人工智能学习
进化计算——求解优化问题文章目录一、优化问题是什么?二、优化问题分类1.依据目标数量分类2.依据变量类型分类3.依据约束条件分类三、优化问题的数学模型四、最优化方法1.两者对比-求解步骤2.两者对比-优缺点五、生物学遗传进化观点进化计算的一般步骤:六、遗传算法(GA)(重点)1.遗传算法基本原理几个概念说明:2.遗传算法的基本结构3.遗传算法与传统优化方法比较:七、用遗传算法求解问题(重点)1.编
- 梯度下降法(Gradient Descent)
Debroon
#机器学习#凸优化
梯度下降法(GradientDescent)梯度下降法批量梯度下降法随机梯度下降法scikit-learn中的随机梯度下降法小批量梯度下降法梯度下降法梯度下降法,不是一个机器学习算法(既不是再做监督学习,也不是非监督学习,分类、回归问题都解决不了),是一种基于搜索的最优化方法。梯度下降法作用是,最小化一个损失函数;而如果我们要最大化一个效用函数,应该使用梯度上升法。这个二维平面描述了,当我们定义了
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 参数更新方法 初始值 抑制过拟合 Batch Normalization等 《深度学习入门》第六章
Dirac811
layout:posttitle:深度学习入门基于Python的理论实现subtitle:第六章与学习相关的技巧tags:[Machinelearning,Reading]第六章与学习相关的技巧本章像是一个补充,主题涉及寻找最优权重参数的最优化方法、权重参数的初始值、超参数的设定方法等。此外,为了应对过拟合,本章还将介绍权值衰减、Dropout等正则化方法,并进行实现。最后将对近年来众多研究中使用
- 【最优化方法】对称矩阵的对角化
撕得失败的标签
最优化方法矩阵线性代数正交化对角化
文章目录正交化方法示例矩阵正交化正交化方法设RnR^nRn中线性无关组a1,a2,a3,…,ana_1,a_2,a_3,\dots,a_na1,a2,a3,…,an,令β1=α1β2=α2−[α2β1]∣∣β1∣∣β1β3=α3−[α3β1]∣∣β1∣∣β1−[α3β2]∣∣β2∣∣β2βn=α3−[αnβ1]∣∣β1∣∣β1−⋯−[αnβn−1]∣∣βn−1∣∣βn−1\begin{aligne
- 【最优化方法】无约束优化问题(最速下降法、牛顿法、最小二乘)
撕得失败的标签
最优化方法线性代数最小二乘法最速下降法牛顿法无约束最优化
文章目录最速下降法示例牛顿法阻尼牛顿法示例最小二乘问题最速下降法最速下降法(SteepestDescentMethod)是一种基于负梯度方向进行迭代的最优化算法,用于寻找一个函数的最小值。该方法也被称为梯度下降法,是一种迭代的一阶优化算法。算法的基本思想是从当前点出发,沿着当前点的负梯度方向,以一定的步长(学习率)移动到新的点,重复这个过程直至达到停止条件。下面是最速下降法的基本步骤:给出x0∈R
- 【最优化方法】约束最优化问题
撕得失败的标签
最优化方法约束最优化KKT定理二次罚函数方法
文章目录不等式约束问题可行方向线性化可行方向序列可行方向KKT定理示例等式约束问题二次罚函数方法示例不等式约束问题考虑约束最优化问题minf(x)s.t.ci(x)=0,i=1,2,⋯ ,m′,ci(x)⩾0,i=m′+1,m′+2,⋯ ,m,\begin{aligned}\min&\quadf(x)\\\mathrm{s.t.}&\quadc_i(x)=0,\quadi=1,2,\cdots,
- 【最优化方法】无约束优化问题(函数梯度、下降方向、最优性)
撕得失败的标签
最优化方法线性代数最优化方法下降方向无约束优化问题最优性条件
文章目录下降方向下降方向与梯度关系例题偏导数方向导数梯度(导数)下降方向最优性条件一阶必要条件二阶必要条件二阶充分条件无约束凸规划的最优性条件我们把一元方程推广到nnn维无约束极小化问题,得到解无约束优化问题minx∈Rnf(x)\min_{x\in\mathbf{R}^n}f(x)x∈Rnminf(x)下降方向设f(x)f(x)f(x)为定义在空间Rn\mathbf{R}^nRn上的连续函数,
- 最优化方法Python计算:无约束优化应用——神经网络分类模型
戌崂石
最优化方法python神经网络分类最优化方法机器学习
Hello,2024.用MLPModel类(详见博文《最优化方法Python计算:无约束优化应用——神经网络回归模型》)和Classification类(详见博文《最优化方法Python计算:无约束优化应用——逻辑分类模型》)可以构建用于分类的神经网络。classMLPClassifier(Classification,MLPModel):'''神经网络分类模型'''用MLPClassifier解
- 【最优化方法】凸优化基本概念
撕得失败的标签
最优化方法线性代数最优化方法凸优化
文章目录凸优化(ConvexOptimization)凸集(ConvexSet)凸集合的运算(OperationsonConvexSets)凸函数(ConvexFunction)凸优化问题(ConvexOptimizationProblem)凸优化(ConvexOptimization)凸优化问题具有许多重要的性质,使得其在理论和实践中都得到广泛应用。这些性质包括全局最优解的存在性、局部最优解即为
- 【最优化方法】凸二次优化
撕得失败的标签
最优化方法线性代数最优化方法凸二次优化海森矩阵Hessian
文章目录凸函数的判别凸二次优化海森矩阵(Hessianmatrix)判断函数凹凸性示例凸函数的判别设S⊂RnS\subsetR^nS⊂Rn是非空开凸集,f:S→Rf:S\rightarrowRf:S→R可微,则(1)fff是SSS上的凸函数,当且仅当f(x2)⩾f(x1)+∇f(x1)T(x2−x1),∀x1,x2∈Sf(x_2)\geqslantf(x_1)+\nablaf(x_1)^T(x_2
- 【最优化方法】矩阵的二次型
撕得失败的标签
最优化方法矩阵线性代数最优化方法
文章目录矩阵二次型的定义正定性、负定性、半定性和不定性示例矩阵二次型的定义矩阵的二次型是一个与矩阵和向量相关的二次多项式。对于一个实数域上的二次型,给定一个n×nn×nn×n的对称矩阵AAA和一个列向量xxx(xxx是一个n×1n×1n×1的列向量),其二次型定义为:Q(x)=xTAxQ(x)=x^TAxQ(x)=xTAx这个二次型表示可以更详细地展开为:Q(x)=∑i=1n∑j=1naijxiy
- 最优化方法Python计算:无约束优化应用——神经网络回归模型
戌崂石
最优化方法python神经网络回归最优化方法机器学习
人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据x=(x1x2⋮xn)\boldsymbol{x}=\begin{pmatrix}x_1\\
- 最优化方法Python计算:无约束优化应用——逻辑分类模型
戌崂石
最优化方法python分类机器学习最优化方法
逻辑回归模型更多地用于如下例所示判断或分类场景。例1某银行的贷款用户数据如下表:欠款(元)收入(元)是否逾期17000800Yes220002500No350003000Yes440004000No520003800No显然,客户是否逾期(记为yyy)与其欠款额(记为x1x_1x1)和收入(记为x2x_2x2)相关。如果将客户逾期还款记为1,未逾期记为0,我们希望根据表中数据建立R2→{0,1}\
- 最优化方法Python计算:无约束优化应用——逻辑回归模型
戌崂石
最优化方法python逻辑回归机器学习最优化方法
S型函数sigmoid(x)=11+e−x\text{sigmoid}(x)=\frac{1}{1+e^{-x}}sigmoid(x)=1+e−x1将全体实数R\text{R}R映射到(0,1)(0,1)(0,1),称为逻辑函数。其图像为该函数连续、有界、单调、可微,性质量好。拟合函数为F(w;x)=sigmoid((x⊤,1)w)=11+e−(x⊤,1)wF(\boldsymbol{w};\bo
- 机器学习中常用的矩阵公式
ᝰꫛꪮꪮꫜ hm
机器学习矩阵机器学习深度学习
因为有监督的机器学习一般是,给定输入x,选择一个模型f作为函数,有f(x)预测出。要得到f的参数,需要定义一个损失函数,来判断预测值与实际值y之间的接近程度。模型学习的过程是求使得loss函数L(f(x),y)最小的参数,这是一个优化问题,一般采用和梯度相关的最优化方法,如梯度下降。一、矩阵迹的定义矩阵的迹:就是矩阵的主对角线上所有元素的和。1.矩阵A(n*n)的迹:2.矩阵A(m*n)B(n*m
- 算法中的最优化方法与实现(第4课 二次型规划的有效集法)
komjay
算法中的最优化方法与实现算法
一、学习目标1.学习有效集法如何求解二次型规划问题二、问题描述三、算法思想1.在每次迭代中,我们都以已知的可行点为起点,把在该点起作用约束作为等式约束,在此约束下极小化目标函数f(x),其余的约束暂且不管,求得比较好的可行点后,再重复以上做法。2.原理推导:(1)对每一步迭代中,定义好现今的问题:(2)修改输入x和f(x)函数,原问题也发生变化:(3)确定下一个可行点的条件:(4)如果不是可行点,
- 算法中的最优化方法与实现 (第5 6课 无约束的非线性规划)
komjay
算法中的最优化方法与实现算法1024程序员节
一、学习目标1.了解非线性问题的标准形式和各种求解方法2.学习牛顿法和拟牛顿法3.学习方向测定-线性最小方法4.学习各种搜索法二、非线性问题1.非线性问题的规范式相比于前两种问题,会显得十分简单:需要注意:这节课先讨论没有约束条件的非线性问题,这样能保证我们在使用后续算法进行自由的搜索。2.求解算法分三类:第一类是以牛顿法为主体的方法;第二类是通过方向测定和线性优化的方法进行优化;第三类是不进行求
- 算法中的最优化方法和实现 (第7课 有约束的非线性规划)
komjay
算法中的最优化方法与实现算法
一、学习目标根据约束条件的类型,将问题分为4类:线性等式、非线性等式、线性不等式、非线性不等式。学习对于不同的问题,使用不同的方法进行求解。统一的思想都是消解法,即消去约束条件,将有约束的问题转化为无约束的问题,再进行求解。注意:我们说的非线性规划,说的是目标函数是非线性的,而上面讲的线性和非线性,指的是约束函数。二、线性等式约束的非线性规划对于等式约束,我们可以通过映射法将约束条件约去。原理就是
- 算法中的最优化方法与实现(第3课 二次型规划)
komjay
算法中的最优化方法与实现算法
一、学习目标1.了解二次型问题的内容2.了解改进单纯形法解决二次型问题的过程二、二次型问题1.与线性问题相同,二次型问题的描述形式也有两类(type1:一般形式,type2:标准形式):其中H矩阵是二次项的参数矩阵,该项会直接导致整个模型是否存在最优解的问题。下面展示几个特殊二次项的图像:下面左图存在多个极值点,右图则不存在最优值:2.关于将一般形式转化为标准形式,其方式与线性问题一样:三、改进单
- 最优化方法Python计算:无约束优化应用——回归模型的测试
戌崂石
最优化方法python线性回归最优化方法机器学习
实践中,除了用训练数据训练回归模型,使用线性回归模型做预测前,通常需要对训练结果进行测试。所谓测试指的是用另一组带有标签的数据数据集(xi⊤,yi),i=1,2,⋯ ,m(\boldsymbol{x}^\top_i,y_i),i=1,2,\cdots,m(xi⊤,yi),i=1,2,⋯,m,用训练所得的最优模式w0\boldsymbol{w}_0w0,得预测值yi′y'_iyi′,i=1,2,⋯
- 最优化方法Python计算:信赖域算法
戌崂石
最优化方法python人工智能最优化方法
作为求解目标函数f(x)f(\boldsymbol{x})f(x)无约束优化问题的策略之一的信赖域方法,与前讨论的线性搜索策略略有不同。线性搜索策略是在当前点xk\boldsymbol{x}_kxk处先确定搜索方向dk\boldsymbol{d}_kdk,再确定在该方向上的搜索步长αk\alpha_kαk。以此计算下一步搜索点xk+1=xk+αkdk.\boldsymbol{x}_{k+1}=\b
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb