- 遗传算法(Genetic Algorithm,GA)-基于MATLAB环境实现
朱佩棋(代码版)
启发式算法启发式算法算法matlab
1.GA简介geneticalgorithm,美国Holland教授创立,基于达尔文进化论和孟德尔的遗传学说。遗传算法类比了生物界中自然选择、交叉、变异等自然进化方式,利用数码串类比染色体,通过选择、交叉、变异等遗传算子模拟生物的进化过程。1.1遗传算法的流程1.编码伪代码:2.产生初始群体Chooseinitialpopulation3.计算适应度Evaluatethefitnessofeach
- 备战2024数学建模国赛(模型三十):遗传算法 优秀案例(三) 变循环发动机部件法建模及优化
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024年数学建模国赛备战数学建模国赛算法遗传算法2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- Matlab实现BP-NSGA-II多目标预测优化方法
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:本文涉及将遗传算法优化的BP神经网络与NSGA-II相结合,应用于多目标预测问题的解决。主要内容包括BP神经网络的学习原理、适应度函数的设计与应用、NSGA-II在多目标优化中的作用、多目标预测的策略以及Matlab工具在算法实现中的使用。本文旨在通过这些技术,帮助读者构建出能在多个相互冲突的目标间取得平衡的优化解决方案,并提供完整的Matlab代码实现,以供
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 备战2024数学建模国赛(模型十五):模糊综合评价 优秀案例(一)确定汽车装配顺序问题的算法
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模汽车算法2024数学建模国赛备战2024数学建模国赛模糊综合评价模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遗传算法,第三部分:繁殖
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.6遗传算法,第三部分:繁殖1、繁殖现在我们已经有了选择父代的策略,下面就开始讨论繁殖下一代的方法,这一步的关键在于达尔文的遗传法则——子代能继承父代的特性。繁殖的实现方式也有很多种。无性繁殖就是一种合理(并容易实现)的策略,该策略用单个父本复制出子代个体。但遗传
- 备战2024数学建模国赛(模型十九):排队论 优秀案例(一)火车票购票网站优化
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛2024数学建模国赛马尔科夫模型排队论
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型四):动态规划优秀案例(一)基于蒙特卡洛模拟的眼科病床安排排队模型
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模动态规划算法20242024年数学建模国赛备战数学建模竞赛matlab
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遗传进化算法进行高效特征选择
广东数字化转型
算法人工智能
在构建机器学习模型时,特征选择是一个关键的预处理步骤。使用全部特征往往会导致过拟合、增加计算复杂度等问题。因此,我们需要从原始特征集中选择一个最优子集,以提高模型的泛化性能和效率。特征选择的目标是找到一个二元掩码向量,对应每个特征的保留(1)或剔除(0)。例如,对于10个特征,这个掩码向量可能是[1,0,1,1,0,0,1,0,1,0]。我们需要通过某种优化方法,寻找一个使目标函数(如模型的贝叶斯
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 备战2024数学建模国赛(模型十八):拟合模型 优秀案例(二)高温作业服设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模2024年数学建模国赛数学建模国赛算法拟合模型
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 备战2024数学建模国赛(模型六):多元回归 优秀案例(一)颜色与物质浓度的辨识问题
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模多元回归2024数学建模国赛2024matlab备战数学建模国赛国赛思路代码
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 遗传算法:启发自真实现象
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.1遗传算法:启发自真实现象1、目标我们的目标不是深入研究遗传和进化的科学原理,我们不会研究旁氏表、核苷酸、蛋白质合成、RNA和其他生物进化相关的话题。相反,我们只讨论达尔文进化论背后的核心原理,并根据这个原理开发出一套算法。我们并不在乎进化模拟是否精确,只关心进
- 手机信令数据分析&移动对象轨迹数据分析--论文摘要合集
doublexiao79
数据分析与挖掘数据分析数据挖掘智能手机
1、《基于电信位置数据的人群流量预测》卢光跃,李四维,赵宇翔,王天赐西安邮电大学学报摘要:将遗传算法和支持向量回归法结合起来,给出一种基于电信位置数据的人群流量预测方法。提取出电信位置数据中的人群流量时间序列,综合考虑其不同时间点值的关联性,用支持向量回归方法对其进行预测,并使用遗传算法对支持向量回归方法的参数进行优化。综合考虑人群流量变化的横向和纵向趋势,同时考虑使用遗传算法对SVR算法的参数进
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 【LSTM回归预测】遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测【含Matlab源码 3738期】
Matlab领域
matlab
⛄一、遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利用深度学习技术来进行风电预测。在本文中,我们将介绍一种基于遗传优化注意力机制的长短时记忆神经网络(GA-attention-LSTM
- 遗传算法(Genetic Algorithm, GA)附代码案例
Cooku Black
机器学习python高级用法遗传算法启发式算法python
遗传算法(GeneticAlgorithm,GA)简介遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索算法,属于进化计算的一种。它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的,用于解决优化问题,是一种启发式算法。遗传算法的基本思想是通过模拟生物进化过程中的遗传和变异机制来优化问题的解。算法流程初始化:随机生成一组染色体(解的编码),构成初
- 智能优化算法——遗传算法(Python&Matlab实现)[2]
2401_84009974
程序员python算法matlab
初始化种群initPopulation(POP,N)进化过程==foritinrange(iter_N):#遍历每一代a,b=selection(N)#随机选择两个个体ifnp.random.random()<0.65:#以0.65的概率进行交叉结合child1,child2=crossover(POP[a],POP[b])new=sorted([POP[a],POP[b],child1,chil
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- 遗传算法与深度学习实战(6)——DEAP框架初体验
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(6)——DEAP框架初体验0.前言1.OneMax问题介绍2.遗传算法要素定义3.使用DEAP解决OneMax问题3.1遗传算法要素配置3.2遗传算法解的进化3.3运行结果3.4eaSimple函数小结系列链接0.前言我们已经了解了DEAP库中的重要数据结构和工具,为了快速掌握DEAP,本节中,我们将介绍DEAP框架下的遗传算法构建流程,并使用DEAP解决简单的OneMax
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
电力程序小学童
机器预测matlab神经网络分类预测
目录主要内容部分代码结果一览下载链接主要内容《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析
- 达尔文的自然选择
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5第9章目录9.3达尔文的自然选择 在研究遗传算法之前,我们要先学习达尔文进化学说中的3个基本法则。如果要正确地模拟自然选择,我们必须同时实现这3个要素。1、遗传子代必须以某种方式继承父代的特性。如果生物存活的时间足够长,繁殖的概率也足够大,那么它们的特征将会传递给下一代。2
- GA-kmedoid 遗传算法优化K-medoids聚类
2301_78492934
机器学习支持向量机人工智能matlab聚类
遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法,它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法,它通过选择K个数据点作为簇中心,将数据点分配到最近的簇中心,以最小化每个数据点到其所属簇中心的距离之和。K-medoids聚类算法是
- MATLAB遗传算法求解车间调度问题——模型建立和实例设计(画甘特图)
麦哥MATLAB
matlab甘特图
1.基本概念车间调度是指根据产品制造的合理需求分配加工车间顺序,从而达到合理利用产品制造资源、提高企业经济效益的目的。车间调度问题从数学上可以描述为有n个待加工的零件要在m台机器上加工。问题需要满足的条件包括每个零件的各道工序使用每台机器不多于1次,每个零件都按照一定的顺序进行加工。车间调度问题实例:现共有6个工件,在10台机器上加工,每个工件都要经过6道加工工序,每个工序可选择机器序号如表一所列
- 遗传算法解释
大吉大利都吃鸡
算法python开发语言人工智能
遗传算法是一种基于自然遗传和进化规律的人工智能算法。它通过模拟生物进化的过程,来解决各种复杂问题。遗传算法的基本流程如下:初始化:随机生成一些解作为初始种群;评估:评估每个解的适应度,根据适应度的高低决定哪些解具有更好的进化前景;交叉:选择适应度较高的两个解,并将它们的特征结合到一起形成一个新的解;变异:对新的解进行随机的突变,以增加它的多样性;替代:在每一代的结束,用新的解替换适应度较低的解。这
- Evolutionary algorithm (遗传算法)介绍
Longlongaaago
机器学习算法数据挖掘人工智能
Evolutionaryalgorithm(遗传算法)介绍Evolutionaryalgorithm遗传算法,实际上也是机器学习里面一个很重要的分支。为什么呢,因为他在之前几十年也是和深度学习一样非常火热流行。现在也有很多人在利用遗传算法做相关研究,还是比较流行的算法之一。Evolutionaryalgorithm算法是受到自然界的一些启发,通过种群优化去解决一些相关的任务,比如做数独,解决一些实
- 使用遗传算法求解一个简单的极值问题,最小化一个具有多个变量的目标函数。
依然风yrlf
算法matlab
下面是一个更详细的MATLAB示例,演示如何使用遗传算法求解一个简单的极值问题。在这个例子中,我们将尝试最小化一个具有多个变量的目标函数。%定义目标函数fitnessFunction=@(x)sum(x.^2);%Rosenbrock函数%定义遗传算法参数options=optimoptions('ga',...'MaxGenerations',100,...%最大迭代次数'PopulationS
- 遗传算法实现
qq_51497433
matlab开发语言算法
遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法,它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的。遗传算法在解决优化和搜索问题时非常有效,特别是在解空间大且复杂时。该算法使用了生物进化中的选择、交叉(杂交)和变异等概念。遗传算法通常包括以下步骤:初始化:随机生成一个初始种群。种群由一定数量的个体组成,每个个体代表一个解。评估:计
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。