FlinkCDC系列02: Seatunnel-Flink-JDBC-Sink如何实现Update

首先阅读Apache Seatunnel官网的关于Flink-JDBC-Sink的文档格式

JdbcSink {
    source_table_name = fake
    driver = com.mysql.jdbc.Driver
    url = "jdbc:mysql://localhost/test"
    username = root
    query = "insert into test(name,age) values(?,?)"
    batch_size = 2
}

首先要吐槽一下就是官网的这个文档几乎什么都没说啊。

Seatunnel-2.1.1-flink-jdbc-sink

这样子有个问题,就是我能不能实现类似spark-jdbc-sink中的update呢?一个只能处理新增不能处理修改的Sink是不合格的!

直接加saveMode这个参数是不行,因为代码里就没有这个参数,要知道到底支持什么参数,必须要直接阅读源码才行。

2.1.1版本Flink-jdbc-sink源代码

查看Config.java可知,根本没有saveMode这个参数。

进一步阅读Sink目录下的JdbcSink.java文件(核心代码)

从prepare这一段代码可知,还有个文档没写的参数叫做password(吐槽)

    @Override
    public void prepare(FlinkEnvironment env) {
        driverName = config.getString(DRIVER);
        dbUrl = config.getString(URL);
        username = config.getString(USERNAME);
        query = config.getString(QUERY);
        if (config.hasPath(PASSWORD)) {
            password = config.getString(PASSWORD);
        }
        if (config.hasPath(SINK_BATCH_SIZE)) {
            batchSize = config.getInt(SINK_BATCH_SIZE);
        }
        if (config.hasPath(SINK_BATCH_INTERVAL)) {
            batchIntervalMs = config.getLong(SINK_BATCH_INTERVAL);
        }
        if (config.hasPath(SINK_BATCH_MAX_RETRIES)) {
            maxRetries = config.getInt(SINK_BATCH_MAX_RETRIES);
        }
    }

 接下来就是重点了,阅读关于stream数据和batch数据分别以JDBC方式写入的核心实现

@Override
    public void outputStream(FlinkEnvironment env, DataStream dataStream) {
        Table table = env.getStreamTableEnvironment().fromDataStream(dataStream);
        TypeInformation[] fieldTypes = table.getSchema().getFieldTypes();

        int[] types = Arrays.stream(fieldTypes).mapToInt(JdbcTypeUtil::typeInformationToSqlType).toArray();
        SinkFunction sink = org.apache.flink.connector.jdbc.JdbcSink.sink(
            query,
            (st, row) -> JdbcUtils.setRecordToStatement(st, types, row),
            JdbcExecutionOptions.builder()
                .withBatchSize(batchSize)
                .withBatchIntervalMs(batchIntervalMs)
                .withMaxRetries(maxRetries)
                .build(),
            new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                .withUrl(dbUrl)
                .withDriverName(driverName)
                .withUsername(username)
                .withPassword(password)
                .build());

        if (config.hasPath(PARALLELISM)) {
            dataStream.addSink(sink).setParallelism(config.getInt(PARALLELISM));
        } else {
            dataStream.addSink(sink);
        }
    }

    @Override
    public void outputBatch(FlinkEnvironment env, DataSet dataSet) {
        Table table = env.getBatchTableEnvironment().fromDataSet(dataSet);
        TypeInformation[] fieldTypes = table.getSchema().getFieldTypes();
        int[] types = Arrays.stream(fieldTypes).mapToInt(JdbcTypeUtil::typeInformationToSqlType).toArray();

        JdbcOutputFormat format = JdbcOutputFormat.buildJdbcOutputFormat()
                .setDrivername(driverName)
                .setDBUrl(dbUrl)
                .setUsername(username)
                .setPassword(password)
                .setQuery(query)
                .setBatchSize(batchSize)
                .setSqlTypes(types)
                .finish();
        dataSet.output(format);
    }

相关的api文档:

setRecordToStatement

Sink

简单的概括一下,在流式数据源中,需要一个query语句和一个statement装配器,flink程序会验证?的数量,并且按照顺序把row中数据装配进去。

在批处理中则是直接加进setQuery中了。

那么要如何实现Update呢?网上的答复基本上都是建议使用Table API(废话,我要是准备自己实现就不会用Seatunnel了!)

FlinkCDC系列02: Seatunnel-Flink-JDBC-Sink如何实现Update_第1张图片

Flink的JDBC Connector是这么写的,如果定义了primary key,那么就可以以upsert的语法进行插入,然后我找了半天也不知道怎么在JdbcSink这个Sink代码里加入相关内容。

那么,既然query是直接进装配器的,那么可以不可以直接通过写一段?数量相同的upsert语句呢?

是可以的。

最终语句如下:

source {
  # This is a example input plugin **only for test and demonstrate the feature input plugin**
    FakeSourceStream {
      result_table_name = "fake"
      field_name = "name,age"
    }

  # If you would like to get more information about how to configure seatunnel and see full list of input plugins,
  # please go to https://seatunnel.apache.org/docs/flink/configuration/source-plugins/Fake
}
sink {
  JdbcSink {
    source_table_name = fake
    driver = "com.mysql.cj.jdbc.Driver"
    url = "jdbc:mysql://192.168.SomeRandomIp:3306/data_for_test"
    username = "root"
    password = "Dont Try to Guess My Password"
    query = "insert into hello(name,age) values(?,?) on duplicate key update age=ifnull(VALUES (age), age)"
    batch_size = 2
  }}

 接上默认的FakeDataStream后实现效果如下:

FlinkCDC系列02: Seatunnel-Flink-JDBC-Sink如何实现Update_第2张图片

 

你可能感兴趣的:(flinkCDC,数据同步,flink,etl)