ANNNet(Asymmetric Non-local Neural Network):《Asymmetric Non-Local Neural Networks for Semantic Segmentation》
发布于2019 ICCV。
之前一直困扰语义分割的两片乌云:
同样为了减少Non-Local的计算量,本文提出了Asymmetric Non-local Block,也就是非对称的Non-Local,如下图。
不同于原始的Non-Local操作,本文提出的Asymmetric Non-local Block在计算Key和Value上通过sample的方式,减少了Key和Value的大小,从而在Matmul和Softmax操作上大大减少了计算量(这两个操作正好是Non-Local操作耗费时间较长的操作模块,说明作者是有目的并非盲目的Sample),而这里的Sample方式会在下文中详细描述。
本文的亮点:
AFNB结构与Non-Local结构的区别在于,AFNB结构计算Key和Value时,通过Pyramid Pooling Module(PPM)(图3右)进行sample。而PPM结构最早由PSPNet提出,在这里,作者将Key和Value的特征图进行池化采样,池化大小为[1, 3, 6, 8],输出为:1×1,3×3,6×6,8×8,展平链接后大小正好为110。
举个例子:一个feature map:[8, 256, 56, 56] 对应 [batch, channels, h, w],如果不进行sample,那么key和value的大小为 [8, 256, 56*56],如果进行sample,大小则为 [8, 256, 110]。我们可以发现,这里面的计算量倍数就是 56 ∗ 56 110 = 28 \frac{56*56}{110}=28 11056∗56=28,当然这里的计算量并不一定是线性的,但是对于query需要连续与key和value进行matmul运算,对于这一部分的计算量减小是显著的。
对于AFNB模块的计算公式,我们有主干网络stage4的输出 X l X_l Xl和stage5的输出 X h X_h Xh,对于Query、Key、Value和输出Out的计算:
q u e r y = f q ( X h ) query = f_q(X_h) query=fq(Xh)
k e y = Φ s a m p l e ( f k ( X h ) ) key = \Phi _{sample}(f_k(X_h)) key=Φsample(fk(Xh))
v a l u e = Φ s a m p l e f v ( X h ) value = \Phi _{sample}f_v(X_h) value=Φsamplefv(Xh)
O u t = f o u t ( S o f t M a x ( q u e r y ⊙ k e y ) ⊙ ( v a l u e ) ) Out =f_{out}(SoftMax(query\odot key) \odot (value)) Out=fout(SoftMax(query⊙key)⊙(value))
对应代码就是:
class AFNPBlock(nn.Module):
def __init__(self, in_channels, key_channels, value_channels, pool_sizes=[1,3,6,8]):
super(AFNPBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.key_channels = key_channels
self.value_channels = value_channels
# query 接受的是stage5的Xh 所以这里的是in_channels=2048
self.Conv_query = nn.Sequential(
nn.Conv2d(self.in_channels, self.key_channels, 1),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
# key 和 value 接受的是stage4的输出Xl 这里的in_channels//2为1024
self.Conv_key = nn.Sequential(
nn.Conv2d(self.in_channels // 2, self.key_channels, 1),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
self.Conv_value = nn.Conv2d(self.in_channels // 2, self.value_channels, 1)
self.ConvOut = nn.Conv2d(self.value_channels, self.out_channels, 1)
self.ppm = PPMModule(pool_sizes)
# 给ConvOut初始化为0
nn.init.constant_(self.ConvOut.weight, 0)
nn.init.constant_(self.ConvOut.bias, 0)
def forward(self, low_feats, high_feats):
# low_feats = stage4 high_feats = stage5
b, c, h, w = high_feats.size()
# value = [batch, -1, value_channels] // 这里-1由pool_sizes决定,目前的设置为110=1+3*3+6*6+8*8
value = self.ppm(self.Conv_value(low_feats)).permute(0, 2, 1)
# batch = [batch, key_channels, -1] // 这里-1由pool_sizes决定,目前的设置为110=1+3*3+6*6+8*8
key = self.ppm(self.Conv_key(low_feats))
# query = [batch, key_channels, h*w] -> [batch, h*w, key_channels]
query = self.Conv_query(high_feats).view(b, self.key_channels, -1).permute(0, 2, 1)
# Concat_QK = [batch, h*w, 110]
Concat_QK = torch.matmul(query, key)
Concat_QK = (self.key_channels ** -.5) * Concat_QK
Concat_QK = F.softmax(Concat_QK, dim=-1)
# Aggregate_QKV = [batch, h*w, Value_channels]
Aggregate_QKV = torch.matmul(Concat_QK, value)
# Aggregate_QKV = [batch, value_channels, h*w]
Aggregate_QKV = Aggregate_QKV.permute(0, 2, 1).contiguous()
# Aggregate_QKV = [batch, value_channels, h*w] -> [batch, value_channels, h, w]
Aggregate_QKV = Aggregate_QKV.view(b, self.value_channels, *high_feats.size()[2:])
# Conv out
Aggregate_QKV = self.ConvOut(Aggregate_QKV)
return Aggregate_QKV
if __name__ == "__main__":
low_feat = torch.randn((2, 1024, 64, 64))
highfeat = torch.randn((2, 2048, 64, 64))
AFNB = AFNPBlock(in_channels=2048, value_channels=256, key_channels=256)
out = AFNB(low_feat, highfeat)
print("AFNP output.shape:",out.shape)
class APNBBlock(nn.Module):
def __init__(self, in_channels, out_channels, key_channels, value_channels, pool_sizes=[1, 3, 6, 8]):
super(APNBBlock, self).__init__()
# Generally speaking, here, in_channels==out_channels and key_channels==value_channles
self.in_channels = in_channels
self.out_channles = out_channels
self.value_channels = value_channels
self.key_channels = key_channels
self.pool_sizes = pool_sizes
self.Conv_Key = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
# 这里Conv_Query 和 Conv_Key权重共享,也就是计算出来的query和key是等同的
self.Conv_Query = self.Conv_Key
self.Conv_Value = nn.Conv2d(self.in_channels, self.key_channels, 1)
self.Conv_Out = nn.Conv2d(self.value_channels, self.out_channles, 1)
nn.init.constant_(self.Conv_Out.weight, 0)
nn.init.constant_(self.Conv_Out.bias, 0)
self.ppm = PPMModule(pool_sizes=self.pool_sizes)
def forward(self, x):
b, _, h, w = x.size()
# query = [batch, key_channels, -1 -> h*w] -> [batch, h*w, key_channels]
value = self.ppm(self.Conv_Value(x)).permute(0, 2, 1)
# query = [batch, key_channels, -1 -> h*w] -> [batch, h*w, key_channels]
query = self.Conv_Query(x).view(b, self.key_channels, -1).permute(0, 2, 1)
# key = [batch, key_channels, 110] where 110 = sum([s*2 for s in pool_sizes]) 1 + 3*2 + 6*2 + 8*2
key = self.ppm(self.Conv_Key(x))
# Concat_QK = [batch, h*w, 110]
Concat_QK = torch.matmul(query, key)
Concat_QK = (self.key_channels ** -.5) * Concat_QK
Concat_QK = F.softmax(Concat_QK, dim=-1)
# Aggregate_QKV = [batch, h*w, Value_channels]
Aggregate_QKV = torch.matmul(Concat_QK, value)
# Aggregate_QKV = [batch, value_channels, h*w]
Aggregate_QKV = Aggregate_QKV.permute(0, 2, 1).contiguous()
# Aggregate_QKV = [batch, value_channels, h*w] -> [batch, value_channels, h, w]
Aggregate_QKV = Aggregate_QKV.view(b, self.value_channels, *x.size()[2:])
# Conv out
Aggregate_QKV = self.Conv_Out(Aggregate_QKV)
return Aggregate_QKV
if __name__ == "__main__":
x = torch.randn((2, 512, 64, 64))
APNB = APNBBlock(in_channels=512, out_channels=512, value_channels=256, key_channels=256)
out = APNB(x)
print("APNB output.shape:",out.shape)
ANNNet通过使用Pyramid Pooling的方式,对Non-Local中的Key和Value进行采样,以减少计算量。分别提出了AFNB和APNB两个非对称的Non-Local结构,分别用于特征融合和提高分割准确率。
需要注意的是,在这里的ResNet50中,最后两个stage没有进行下采样,也就是最后两个stage特征图大小是相同的。
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
expansion: int = 4
def __init__(self, inplanes, planes, stride = 1, downsample = None, groups = 1,
base_width = 64, dilation = 1, norm_layer = None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = nn.Conv2d(inplanes, planes ,kernel_size=3, stride=stride,
padding=dilation,groups=groups, bias=False,dilation=dilation)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes ,kernel_size=3, stride=stride,
padding=dilation,groups=groups, bias=False,dilation=dilation)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample= None,
groups = 1, base_width = 64, dilation = 1, norm_layer = None,):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, bias=False)
self.bn1 = norm_layer(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, bias=False, padding=dilation, dilation=dilation)
self.bn2 = norm_layer(width)
self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, bias=False)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,block, layers,num_classes = 1000, zero_init_residual = False, groups = 1,
width_per_group = 64, replace_stride_with_dilation = None, norm_layer = None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 2
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(
self,
block,
planes,
blocks,
stride = 1,
dilate = False,
):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = stride
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
norm_layer(planes * block.expansion))
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x):
out = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
out.append(x)
x = self.layer4(x)
out.append(x)
return out
def forward(self, x) :
return self._forward_impl(x)
def _resnet(block, layers, pretrained_path = None, **kwargs,):
model = ResNet(block, layers, **kwargs)
if pretrained_path is not None:
model.load_state_dict(torch.load(pretrained_path), strict=False)
return model
def resnet50(pretrained_path=None, **kwargs):
return ResNet._resnet(Bottleneck, [3, 4, 6, 3],pretrained_path,**kwargs)
def resnet101(pretrained_path=None, **kwargs):
return ResNet._resnet(Bottleneck, [3, 4, 23, 3],pretrained_path,**kwargs)
先实现sample功能
import torch
import torch.nn as nn
import torch.nn.functional as F
class PPMModule(nn.ModuleList):
def __init__(self, pool_sizes=[1,3,6,8]):
super(PPMModule, self).__init__()
for pool_size in pool_sizes:
self.append(
nn.Sequential(
nn.AdaptiveAvgPool2d(pool_size)
)
)
def forward(self, x):
out = []
b, c, _, _ = x.size()
for index, module in enumerate(self):
out.append(module(x))
# 最后输出时将其合并
return torch.cat([output.view(b, c, -1) for output in out], -1)
if __name__ == "__main__":
input = torch.randn((2, 256, 32, 32))
ppmModule = PPMModule()
out = ppmModule(input)
print(out.size())
class AFNPBlock(nn.Module):
def __init__(self, in_channels, key_channels, value_channels, pool_sizes=[1,3,6,8]):
super(AFNPBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.key_channels = key_channels
self.value_channels = value_channels
# query 接受的是stage5的Xh 所以这里的是in_channels=2048
self.Conv_query = nn.Sequential(
nn.Conv2d(self.in_channels, self.key_channels, 1),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
# key 和 value 接受的是stage4的输出Xl 这里的in_channels//2为1024
self.Conv_key = nn.Sequential(
nn.Conv2d(self.in_channels // 2, self.key_channels, 1),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
self.Conv_value = nn.Conv2d(self.in_channels // 2, self.value_channels, 1)
self.ConvOut = nn.Conv2d(self.value_channels, self.out_channels, 1)
self.ppm = PPMModule(pool_sizes)
# 给ConvOut初始化为0
nn.init.constant_(self.ConvOut.weight, 0)
nn.init.constant_(self.ConvOut.bias, 0)
def forward(self, low_feats, high_feats):
# low_feats = stage4 high_feats = stage5
b, c, h, w = high_feats.size()
# value = [batch, -1, value_channels] // 这里-1由pool_sizes决定,目前的设置为110=1+3*3+6*6+8*8
value = self.ppm(self.Conv_value(low_feats)).permute(0, 2, 1)
# batch = [batch, key_channels, -1] // 这里-1由pool_sizes决定,目前的设置为110=1+3*3+6*6+8*8
key = self.ppm(self.Conv_key(low_feats))
# query = [batch, key_channels, h*w] -> [batch, h*w, key_channels]
query = self.Conv_query(high_feats).view(b, self.key_channels, -1).permute(0, 2, 1)
# Concat_QK = [batch, h*w, 110]
Concat_QK = torch.matmul(query, key)
Concat_QK = (self.key_channels ** -.5) * Concat_QK
Concat_QK = F.softmax(Concat_QK, dim=-1)
# Aggregate_QKV = [batch, h*w, Value_channels]
Aggregate_QKV = torch.matmul(Concat_QK, value)
# Aggregate_QKV = [batch, value_channels, h*w]
Aggregate_QKV = Aggregate_QKV.permute(0, 2, 1).contiguous()
# Aggregate_QKV = [batch, value_channels, h*w] -> [batch, value_channels, h, w]
Aggregate_QKV = Aggregate_QKV.view(b, self.value_channels, *high_feats.size()[2:])
# Conv out
Aggregate_QKV = self.ConvOut(Aggregate_QKV)
return Aggregate_QKV
if __name__ == "__main__":
low_feat = torch.randn((2, 1024, 64, 64))
highfeat = torch.randn((2, 2048, 64, 64))
AFNB = AFNPBlock(in_channels=2048, value_channels=256, key_channels=256)
out = AFNB(low_feat, highfeat)
print("AFNP output.shape:",out.shape)
class APNBBlock(nn.Module):
def __init__(self, in_channels, out_channels, key_channels, value_channels, pool_sizes=[1, 3, 6, 8]):
super(APNBBlock, self).__init__()
# Generally speaking, here, in_channels==out_channels and key_channels==value_channles
self.in_channels = in_channels
self.out_channles = out_channels
self.value_channels = value_channels
self.key_channels = key_channels
self.pool_sizes = pool_sizes
self.Conv_Key = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.key_channels),
nn.ReLU()
)
# 这里Conv_Query 和 Conv_Key权重共享,也就是计算出来的query和key是等同的
self.Conv_Query = self.Conv_Key
self.Conv_Value = nn.Conv2d(self.in_channels, self.value_channels, 1)
self.Conv_Out = nn.Conv2d(self.value_channels, self.out_channles, 1)
nn.init.constant_(self.Conv_Out.weight, 0)
nn.init.constant_(self.Conv_Out.bias, 0)
self.ppm = PPMModule(pool_sizes=self.pool_sizes)
def forward(self, x):
b, _, h, w = x.size()
# query = [batch, key_channels, -1 -> h*w] -> [batch, h*w, key_channels]
value = self.ppm(self.Conv_Value(x)).permute(0, 2, 1)
# query = [batch, key_channels, -1 -> h*w] -> [batch, h*w, key_channels]
query = self.Conv_Query(x).view(b, self.key_channels, -1).permute(0, 2, 1)
# key = [batch, key_channels, 110] where 110 = sum([s*2 for s in pool_sizes]) 1 + 3*2 + 6*2 + 8*2
key = self.ppm(self.Conv_Key(x))
# Concat_QK = [batch, h*w, 110]
Concat_QK = torch.matmul(query, key)
Concat_QK = (self.key_channels ** -.5) * Concat_QK
Concat_QK = F.softmax(Concat_QK, dim=-1)
# Aggregate_QKV = [batch, h*w, Value_channels]
Aggregate_QKV = torch.matmul(Concat_QK, value)
# Aggregate_QKV = [batch, value_channels, h*w]
Aggregate_QKV = Aggregate_QKV.permute(0, 2, 1).contiguous()
# Aggregate_QKV = [batch, value_channels, h*w] -> [batch, value_channels, h, w]
Aggregate_QKV = Aggregate_QKV.view(b, self.value_channels, *x.size()[2:])
# Conv out
Aggregate_QKV = self.Conv_Out(Aggregate_QKV)
return Aggregate_QKV
if __name__ == "__main__":
x = torch.randn((2, 512, 64, 64))
APNB = APNBBlock(in_channels=512, out_channels=512, value_channels=256, key_channels=256)
out = APNB(x)
print("APNB output.shape:",out.shape)
import torch
import torch.nn as nn
import torch.nn.functional as F
class asymmetric_non_local_network(nn.Sequential):
def __init__(self, num_classes=2, aux_loss=False):
super(asymmetric_non_local_network, self).__init__()
self.num_classes = num_classes
# 是否需要辅助的Loss分支
self.aux_loss = aux_loss
self.backbone = ResNet.resnet50(replace_stride_with_dilation=[1,2,4])
# AFNB and APNB
self.fusion = AFNPBlock(in_channels=2048, value_channels=256, key_channels=256, pool_sizes=[1,3,6,8])
self.APNB = APNBBlock(in_channels=512, out_channels=512, value_channels=256, key_channels=256, pool_sizes=[1,3,6,8])
# extra added layers
self.context = nn.Sequential(
nn.Conv2d(2048, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
self.APNB
)
self.cls = nn.Conv2d(512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True)
self.dsn = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Dropout2d(0.05),
nn.Conv2d(512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True)
)
def forward(self, x_):
x = self.backbone(x_)
aux_x = self.dsn(x[-2])
x = self.fusion(x[-2], x[-1])
x = self.context(x)
x = self.cls(x)
aux_x = F.interpolate(aux_x, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True)
x = F.interpolate(x, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True)
if self.aux_loss:
return aux_x, x
return x
if __name__ == "__main__":
x = torch.randn((2, 3, 224, 224))
ANNNet = asymmetric_non_local_network(num_classes=2)
out = ANNNet(x)
print("ANNNet auxoutput.shape:",out[0].shape)
print("ANNNet output.shape:",out[1].shape)
# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
def __init__(self, images_dir, masks_dir):
self.transform = A.Compose([
A.Resize(224, 224),
A.HorizontalFlip(),
A.VerticalFlip(),
A.Normalize(),
ToTensorV2(),
])
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
def __getitem__(self, i):
# read data
image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
image = self.transform(image=image,mask=mask)
return image['image'], image['mask'][:,:,0]
def __len__(self):
return len(self.ids)
# 设置数据集路径
DATA_DIR = r'database/camvid/camvid/' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
train_dataset = CamVidDataset(
x_train_dir,
y_train_dir,
)
val_dataset = CamVidDataset(
x_valid_dir,
y_valid_dir,
)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)
model = asymmetric_non_local_network(num_classes=33).cuda()
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5, last_epoch=-1)
#训练50轮
epochs_num = 100
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
devices=d2l.try_all_gpus()):
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
loss_list = []
train_acc_list = []
test_acc_list = []
epochs_list = []
time_list = []
for epoch in range(num_epochs):
# Sum of training loss, sum of training accuracy, no. of examples,
# no. of predictions
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(
net, features, labels.long(), loss, trainer, devices)
metric.add(l, acc, labels.shape[0], labels.numel())
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
scheduler.step()
print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} --- train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
#---------保存训练数据---------------
df = pd.DataFrame()
loss_list.append(metric[0] / metric[2])
train_acc_list.append(metric[1] / metric[3])
test_acc_list.append(test_acc)
epochs_list.append(epoch+1)
time_list.append(timer.sum())
df['epoch'] = epochs_list
df['loss'] = loss_list
df['train_acc'] = train_acc_list
df['test_acc'] = test_acc_list
df['time'] = time_list
df.to_excel("savefile/ANNNet_camvid.xlsx")
#----------------保存模型-------------------
if np.mod(epoch+1, 5) == 0:
torch.save(model.state_dict(), f'checkpoints/ANNNet_{epoch+1}.pth')
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)