阿克曼结构移动机器人的gazebo仿真(三)

阿克曼结构移动机器人的gazebo仿真(三)

第三章、让小车动起来

1.配置controller

在tianracer_description功能包新建config文件夹,通过一个yaml文件smart_control_config.yaml来声明我们所需要的controller,以及对应的参数,PID增益和 控制器设置必须保存在yaml文件中,然后通过 launch文件加载到param服务器上:

tianracer:
# controls the rear two tires based on individual motors
  # Publish all joint states -----------------------------------
  joint_state_controller:
    type: joint_state_controller/JointStateController
    publish_rate: 50  
  rear_right_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: right_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  rear_left_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: left_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  front_right_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: right_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}    
  front_left_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: left_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}
   gazebo_ros_control:
    pid_gains:
      right_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0
      left_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0

2.配置launch文件

创建一个 rosLaunch 文件以启动 ros_control controllers,使用launch文件control.launch,运行controller_manager中的spawner,加载并运行这些上边这些controller:





  
  

  
  

  
      
  

  



接着创建一个可以将小车模型在gazebo中打开的launch文件tianracer.launch,并且能够加载上述control.launch文件



	    
    
    
    
    
    
    
    
    
    
    
    
    

	
	
        	
        	
        	
        	
        	
	 
               
    	

	
	

  	    
     

          
  
  
  

    
  


3.配置运动学模型

在功能包中新建scripts文件夹,并加入cmdvel2gazebo.py文件,该文件用的是

从零开始自动驾驶07

中的开源代码,其中代码的解析这里不做展开复述,各位请自行到原地址观看,up主讲的很好。该文件定义了小车的运动学模型,并且订阅了一个Twist消息类型的话题tianracer/cmd_vel,我们可以通过编写一个接收该消息类型话题的节点来控制小车运动。

代码如下:

#!/usr/bin/env python

import rospy
from std_msgs.msg import Float64
from geometry_msgs.msg import Twist
import math


class CmdVel2Gazebo:

    def __init__(self):
        rospy.init_node('cmdvel2gazebo', anonymous=True)
        
        rospy.Subscriber('/tianracer/cmd_vel', Twist, self.callback, queue_size=1)

        self.pub_steerL = rospy.Publisher('/tianracer/front_left_steering_position_controller/command', Float64, queue_size=1)
        self.pub_steerR = rospy.Publisher('/tianracer/front_right_steering_position_controller/command', Float64, queue_size=1)
        self.pub_rearL = rospy.Publisher('/tianracer/rear_left_velocity_controller/command', Float64, queue_size=1)
        self.pub_rearR = rospy.Publisher('/tianracer/rear_right_velocity_controller/command', Float64, queue_size=1)

        # initial velocity and tire angle are 0
        self.x = 0
        self.z = 0

        # car Wheelbase (in m)
        self.L = 0.261

        # car Tread
        self.T_front = 0.1632
        self.T_rear = 0.1632

        # how many seconds delay for the dead man's switch
        self.timeout=rospy.Duration.from_sec(0.2);
        self.lastMsg=rospy.Time.now()

        # maximum steer angle of the "inside" tire
        self.maxsteerInside=0.6;

        # turning radius for maximum steer angle just with the inside tire
        # tan(maxsteerInside) = wheelbase/radius --> solve for max radius at this angle
        rMax = self.L/math.tan(self.maxsteerInside);

        # radius of inside tire is rMax, so radius of the ideal middle tire (rIdeal) is rMax+treadwidth/2
        rIdeal = rMax+(self.T_front/2.0)

        # maximum steering angle for ideal middle tire
        # tan(angle) = wheelbase/radius
        self.maxsteer=math.atan2(self.L,rIdeal)

        # loop
        rate = rospy.Rate(10) # run at 10Hz
        while not rospy.is_shutdown():
            self.publish()
            rate.sleep()
        

    def callback(self,data):
        # w = v / r
        self.x = data.linear.x / 0.3
        # constrain the ideal steering angle such that the ackermann steering is maxed out
        self.z = max(-self.maxsteer,min(self.maxsteer,data.angular.z))
        self.lastMsg = rospy.Time.now()

    def publish(self):
        # now that these values are published, we
        # reset the velocity, so that if we don't hear new
        # ones for the next timestep that we time out; note
        # that the tire angle will not change
        # NOTE: we only set self.x to be 0 after 200ms of timeout
        delta_last_msg_time = rospy.Time.now() - self.lastMsg
        msgs_too_old = delta_last_msg_time > self.timeout
        if msgs_too_old:
            self.x = 0
            msgRear = Float64()
            msgRear.data = self.x
            self.pub_rearL.publish(msgRear)
            self.pub_rearR.publish(msgRear)
            msgSteer = Float64()
            msgSteer.data = 0
            self.pub_steerL.publish(msgSteer)
            self.pub_steerR.publish(msgSteer)

            return

        # The self.z is the delta angle in radians of the imaginary front wheel of ackerman model.
        if self.z != 0:
            T_rear = self.T_rear
            T_front = self.T_front
            L=self.L
            # self.v is the linear *velocity*
            r = L/math.fabs(math.tan(self.z))

            rL_rear = r-(math.copysign(1,self.z)*(T_rear/2.0))
            rR_rear = r+(math.copysign(1,self.z)*(T_rear/2.0))
            rL_front = r-(math.copysign(1,self.z)*(T_front/2.0))
            rR_front = r+(math.copysign(1,self.z)*(T_front/2.0))
            msgRearR = Float64()
            # the right tire will go a little faster when we turn left (positive angle)
            # amount is proportional to the radius of the outside/ideal
            msgRearR.data = self.x*rR_rear/r;
            msgRearL = Float64()
            # the left tire will go a little slower when we turn left (positive angle)
            # amount is proportional to the radius of the inside/ideal
            msgRearL.data = self.x*rL_rear/r;

            self.pub_rearL.publish(msgRearL)
            self.pub_rearR.publish(msgRearR)

            msgSteerL = Float64()
            msgSteerR = Float64()
            # the left tire's angle is solved directly from geometry
            msgSteerL.data = math.atan2(L,rL_front)*math.copysign(1,self.z)
            self.pub_steerL.publish(msgSteerL)
    
            # the right tire's angle is solved directly from geometry
            msgSteerR.data = math.atan2(L,rR_front)*math.copysign(1,self.z)
            self.pub_steerR.publish(msgSteerR)
        else:
            # if we aren't turning
            msgRear = Float64()
            msgRear.data = self.x;
            self.pub_rearL.publish(msgRear)
            # msgRear.data = 0;
            self.pub_rearR.publish(msgRear)

            msgSteer = Float64()
            msgSteer.data = self.z

            self.pub_steerL.publish(msgSteer)
            self.pub_steerR.publish(msgSteer)


if __name__ == '__main__':
    try:
        CmdVel2Gazebo()
    except rospy.ROSInterruptException:
        pass

将代码中的话题名以及参数进行修改,改为自己小车模型的尺寸参数。并将该python代码作为一个节点添加到control.launch文件中。

4.让小车动起来

通过rostopic pub话题让小车动起来

到此为止已经可以通过pub话题让小车动起来了。

roslaunch tianracer_description tianracer.launch 

再开一个终端,使用rostopic list来看一下话题列表

rostopic list

阿克曼结构移动机器人的gazebo仿真(三)_第1张图片

可以看到发布了单目摄像头,深度摄像头,激光雷达,以及让小车运动的tianracer/cmd_vel话题,将这个话题pub一下:

rostopic pub /tianracer/cmd_vel -r 10 geometry_msgs/Twist "linear:
  x: 1.0
  y: 0.0
  z: 0.0
angular:
  x: 0.0
  y: 0.0
  z: 1.0" 

此时小车便会绕着Z轴转动起来。

使用键盘控制节点控制小车运动

在tianracer_description/scripts目录下新建teleop.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import rospy
from geometry_msgs.msg import Twist
import sys, select, termios, tty

msg = """
Control mbot!
---------------------------
Moving around:
   u    i    o
   j    k    l
   m    ,    .

q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly

CTRL-C to quit
"""

moveBindings = {
        'i':(1,0),
        'o':(1,-1),
        'j':(0,1),
        'l':(0,-1),
        'u':(1,1),
        ',':(-1,0),
        '.':(-1,1),
        'm':(-1,-1),
           }

speedBindings={
        'q':(1.1,1.1),
        'z':(.9,.9),
        'w':(1.1,1),
        'x':(.9,1),
        'e':(1,1.1),
        'c':(1,.9),
          }

def getKey():
    tty.setraw(sys.stdin.fileno())
    rlist, _, _ = select.select([sys.stdin], [], [], 0.1)
    if rlist:
        key = sys.stdin.read(1)
    else:
        key = ''

    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
    return key

speed = 10
turn = 1

def vels(speed,turn):
    return "currently:\tspeed %s\tturn %s " % (speed,turn)

if __name__=="__main__":
    settings = termios.tcgetattr(sys.stdin)
    
    rospy.init_node('carsmart_teleop')
    pub = rospy.Publisher('/tianracer/cmd_vel', Twist, queue_size=5)

    x = 0
    th = 0
    status = 0
    count = 0
    acc = 0.1
    target_speed = 0
    target_turn = 0
    control_speed = 0
    control_turn = 0
    try:
        print msg
        print vels(speed,turn)
        while(1):
            key = getKey()
            # 运动控制方向键(1:正方向,-1负方向)
            if key in moveBindings.keys():
                x = moveBindings[key][0]
                th = moveBindings[key][1]
                count = 0
            # 速度修改键
            elif key in speedBindings.keys():
                speed = speed * speedBindings[key][0]  # 线速度增加0.1倍
                turn = turn * speedBindings[key][1]    # 角速度增加0.1倍
                count = 0

                print vels(speed,turn)
                if (status == 14):
                    print msg
                status = (status + 1) % 15
            # 停止键
            elif key == ' ' or key == 'k' :
                x = 0
                th = 0
                control_speed = 0
                control_turn = 0
            else:
                count = count + 1
                if count > 4:
                    x = 0
                    th = 0
                if (key == '\x03'):
                    break

            # 目标速度=速度值*方向值
            target_speed = speed * x
            target_turn = turn * th

            # 速度限位,防止速度增减过快
            if target_speed > control_speed:
                control_speed = min( target_speed, control_speed + 0.02 )
            elif target_speed < control_speed:
                control_speed = max( target_speed, control_speed - 0.02 )
            else:
                control_speed = target_speed

            if target_turn > control_turn:
                control_turn = min( target_turn, control_turn + 0.1 )
            elif target_turn < control_turn:
                control_turn = max( target_turn, control_turn - 0.1 )
            else:
                control_turn = target_turn

            # 创建并发布twist消息
            twist = Twist()
            twist.linear.x = control_speed; 
            twist.linear.y = 0; 
            twist.linear.z = 0
            twist.angular.x = 0; 
            twist.angular.y = 0; 
            twist.angular.z = control_turn
            pub.publish(twist)

    except:
        print e

    finally:
        twist = Twist()
        twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
        twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0
        pub.publish(twist)

    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

该节点发布了一个Twist消息类型的话题tianracer/cmd_vel,可以通过键盘来控制小车运动。

roslaunch tianracer_description tianracer.launch 
rosrun tianracer_description teleop.py 

阿克曼结构移动机器人的gazebo仿真(三)_第2张图片

此时按u,i,o等按键即可控制小车运动了,通过rqt_graph看一下各个节点之间的关系:

rqt_graph

阿克曼结构移动机器人的gazebo仿真(三)_第3张图片

小结

至此,已经成功让小车动起来了,而且也添加了激光雷达传感器,这也就意味着接下去就能做建图导航了,然而由于从solidworks导出的模型惯性参数等方面的一些问题,导致小车运动起来多多少少有一些问题,所以我手撸了小车的1:1简易模型的代码,并且准备用ackermann消息控制小车运动,并使用该模型完成接下去的建图导航等内容。

阿克曼结构移动机器人的gazebo仿真(三)_第4张图片

参考资料

1.古月老师的<>
2.从零驾驶自动驾驶

你可能感兴趣的:(阿克曼小车仿真,ROS学习,人工智能)