caffe中新增自己的激活函数层_C++实现

一、前言

    本篇主要转载自一个视频教程,主要实现在caffe中新增自己的层。

二、具体做法

     自定义一个计算层,实现y=x^power+bur的功能,事实上这个新层为激活函数层

三、实现的方法思路   

    caffe中新增自己的激活函数层_C++实现_第1张图片

    (1)任何一个层都可以被继承,然后进行重写函数

    (2)尽量确保要实现的功能是否必须要自己写,不然尽量用已有的层,每一个层在caffe/include/caffe/layers
源码中都有详细的介绍

四、整体步骤

1. 创建新定义的头文件include/caffe/layers/my_neuron_layer.hpp
    重新Layer名的方法:virtual inline const char*  type() const { return "MyNeuron"; }
    如果只是需要cpu方法的话,可以注释掉forward/backward_gpu()这两个方法
2. 创建对应src/caffe/src/my_neuron_layer.cpp的源文件
    重写方法LayerSetUp,实现从能从prototxt读取参数,这个没有从prototxt读取新的参数,则不需要重写
    重写方法Reshape,如果对继承类没有修改的话,就不需要重写
    重写方法Forward_cpu
    重写方法Backward_cpu(非必须)
    如果要GPU支持,则还需要创建src/caffe/src/my_neuron_layer.cu,同理重写方法Forward_gpu/Backward_gpu(非必须)
3. 到proto/caffe.proto 注册新的layer   
4. 在my_neuron_layer.cpp添加注册的宏定义
    INSTANTIATE_CLASS(MyNeuronLayer);
    REGISTER_LAYER_CLASS(MyNeuron);  
    如果有my_neuron_layer.cu 文件,则还要添加 
    INSTANTIATE_LAYER_GPU_FUNCS(MyNeuronLayer); 
5. 重新make和install

五、具体做法(仅仅用CPU)

5.1、prototxt文件中新层的描述

     由于需要从prototxt文件中读取参数初始化 power 和 bur,所实现新层为激活函数的功能,故可参考sigmoid_layer 的写法,先参看sigmoid在prototxt文件的描述:

 

layer {
name: "sigmoid"
type: "Sigmoid"
bottom: "fc1"
top: "fc1"
}

 

     新增参数 power 和 bur,在prototxt文件中描述可这样写:

layer {
  name: "myneuron"
  type: "MyNeuron"  #name和type不一样
  bottom: "fc1"
  top: "fc1"
  my_neuron_param {
    power: 3
    bur: 1
  }
}

5.2、新增 myNeuron_layer.hpp 和 myNeuron_layer.cpp

 

    方便的做法是参考相似层的写法,这里将sigmoid_layer.hpp和sigmoid_layer.cpp 改为相应名字后,分别保存至include/caffe/layers/ 和 src/caffe/layers/ , 并分别修改如下:

//myNeuron_layer.hpp
#ifndef CAFFE_MY_NEURON_LAYER_HPP_
#define CAFFE_MY_NEURON_LAYER_HPP_

#include 

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/neuron_layer.hpp"

namespace caffe {

template 
class MyNeuronLayer : public NeuronLayer {
 public:
  
  explicit MyNeuronLayer(const LayerParameter& param)
      : NeuronLayer(param) {}
  virtual void LayerSetUp(const vector*>& bottom,
      const vector*>& top);

  virtual inline const char* type() const { return "MyNeuron"; }

 protected:
  
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,const vector*>& top);

  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);
  virtual void Backward_gpu(const vector*>& top,const vector& propagate_down, const vector*>& bottom);

  Dtype power_;
  Dtype bur_;
};

}  // namespace caffe

#endif  // CAFFE_MY_NEURON_LAYER_HPP_
//myNeuron_layer.cpp
#include 

#include "caffe/layers/myNeuron_layer.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template 
void MyNeuronLayer::LayerSetUp(const vector*>& bottom,const vector*>& top){
  
  NeuronLayer::LayerSetUp(bottom,top);
  power_ = this->layer_param_.my_neuron_param().power();
  bur_ = this->layer_param_.my_neuron_param().bur();
}

// Compute y = x^power
template 
void MyNeuronLayer::Forward_cpu(const vector*>& bottom,const vector*>& top){

  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  caffe_powx(count, bottom[0]->cpu_data(), Dtype(power_), top_data);
  caffe_add_scale(count, Dtype(bur_), top_data);
}

template 
void MyNeuronLayer::Backward_cpu(const vector*>& top,const vector& propagate_down,const vector*>& bottom){
  const int count = top[0]->count();
  const Dtype* top_diff = top[0]->cpu_diff();
  if(propagate_down[0]){
    const Dtype* bottom_data = bottom[0]->cpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    caffe_powx(count, bottom_data, Dtype(power_ - 1), bottom_diff);
    caffe_scal(count, Dtype(power_), bottom_diff);
    caffe_mul(count, bottom_diff, top_diff, bottom_diff);
  }

}

#ifdef CPU_ONLY
STUB_GPU(MyNeuronLayer);
#endif

INSTANTIATE_CLASS(MyNeuronLayer);  
REGISTER_LAYER_CLASS(MyNeuron);

}// namespace caffe

5.3、注册
    接下来需要进行注册。

   (1) 到src/caffe/proto/caffe.proto 注册 prototxt中的 my_neuron_param 

 

message LayerParameter {
...
optional MyNeuronParameter my_neuron_param = 150;
...
}
...
message MyNeuronParameter{
  optional float power = 1 [default = 2];
  optional float bur = 2 [default = 1];
}
...
message V1LayerParameter {
...
MYNEURON = 40;  #大写
...
}

 

        V1layer注册的是全大写的类型名字,这点有点不知为何
   (2) 在cpp文件中最后注册cpp中所创建的新类和 相应 prototxt中的类型名

 

INSTANTIATE_CLASS(MyNeuronLayer);  
REGISTER_LAYER_CLASS(MyNeuron); //注意这里和V1LayerParameter保持一致

5.4、测试

 

     重新make之后,创建deploy.prototxt 和 test_my_neuron.py 如下

 

name: "CaffeNet"
input: "data"
input_shape {
  dim: 1 # batchsize
  dim: 1 # number of colour channels - rgb
  dim: 28 # width
  dim: 28 # height
}
layer {
  name: "myneuron"
  type: "MyNeuron"
  bottom: "data"
  top: "data_out"
  my_neuron_param {
    power : 2
    bur : 1
  }
}
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import os
import sys

deploy_file = "./deploy.prototxt"
test_data   = "./5.jpg"

if __name__ == '__main__':
  sys.path.append("/home/zjy/caffe/python")
  import caffe

  net = caffe.Net(deploy_file,caffe.TEST)

  transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})

  transformer.set_transpose('data', (2, 0, 1))

  img = caffe.io.load_image(test_data,color=False)

  net.blobs['data'].data[...] = transformer.preprocess('data', img)

  print net.blobs['data'].data[0][0][14]

  out = net.forward()

  print out['data_out'][0][0][14]

5.5、运行结果
caffe中新增自己的激活函数层_C++实现_第2张图片
六、具体做法(用GPU)

 

 

 

6.1、prototxt文件中新层的描述

    保持不变

6.2、新增 myNeuron_layer.hpp 和 myNeuron_layer.cu

      myNeuron_layer.hpp 保持不变,在src/caffe/layers/ 增加 myNeuron_layer.cu

 

#include 

#include "caffe/layers/myNeuron_layer.hpp"
#include "caffe/util/math_functions.hpp"
#include 
using namespace std;

namespace caffe {

template 
void MyNeuronLayer::Forward_gpu(
    const vector*>& bottom, const vector*>& top) {
  const int count = top[0]->count();
  Dtype* top_data = top[0]->mutable_gpu_data();
  caffe_gpu_powx(count, bottom[0]->gpu_data(), Dtype(power_), top_data);
}

template 
void MyNeuronLayer::Backward_gpu(const vector*>& top,
    const vector& propagate_down, const vector*>& bottom) {
  const int count = top[0]->count();
  const Dtype* top_diff = top[0]->gpu_diff();
  if (propagate_down[0]) {
    const Dtype* bottom_data = bottom[0]->gpu_data();
    Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
    const Dtype* bottom_data_w = bottom[0]->cpu_data();
    const Dtype* bottom_diff_w = bottom[0]->cpu_diff();

    cout << "bottom_data[0]: " << bottom_data_w[0] << endl;
    cout << "bottom_diff[0]: " << bottom_diff_w[0] << endl;

    caffe_gpu_powx(count, bottom_data, Dtype(power_ - 1), bottom_diff);

    bottom_diff = bottom[0]->mutable_gpu_diff();
    bottom_data_w = bottom[0]->cpu_data();
    bottom_diff_w = bottom[0]->cpu_diff();
    cout << "bottom_data[0]: " << bottom_data_w[0] << endl;
    cout << "bottom_diff[0]: " << bottom_diff_w[0] << endl;

    caffe_gpu_scal(count, Dtype(power_), bottom_diff);

    bottom_diff = bottom[0]->mutable_gpu_diff();
    bottom_data_w = bottom[0]->cpu_data();
    bottom_diff_w = bottom[0]->cpu_diff();
    cout << "bottom_data[0]: " << bottom_data_w[0] << endl;
    cout << "bottom_diff[0]: " << bottom_diff_w[0] << endl;

    caffe_gpu_mul(count, bottom_diff, top_diff, bottom_diff);

    bottom_diff = bottom[0]->mutable_gpu_diff();
    bottom_data_w = bottom[0]->cpu_data();
    bottom_diff_w = bottom[0]->cpu_diff();
    cout << "bottom_data[0]: " << bottom_data_w[0] << endl;
    cout << "bottom_diff[0]: " << bottom_diff_w[0] << endl;
  }
}

INSTANTIATE_LAYER_GPU_FUNCS(MyNeuronLayer);

}  // namespace caffe

5.3、注册
(1) 保持不变

 

(2) 在 cu 文件后添加

INSTANTIATE_LAYER_GPU_FUNCS(MyNeuronLayer);

5.4、测试
     重新 make之后,创建 deploy.prototxt 和 test_my_neuron_gpu.py , deploy.prototxt  保持不变,test_my_neuron_gpu.py

如下:

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import os
import sys

deploy_file = "./deploy.prototxt"
test_data   = "./5.jpg"

if __name__ == '__main__':
  sys.path.append("/home/zjy/caffe/python")
  import caffe
  caffe.set_mode_gpu()

  net = caffe.Net(deploy_file,caffe.TEST)

  transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})

  transformer.set_transpose('data', (2, 0, 1))

  img = caffe.io.load_image(test_data,color=False)

  net.blobs['data'].data[...] = transformer.preprocess('data', img)

  print net.blobs['data'].data[0][0][14]

  out = net.forward()

  print out['data_out'][0][0][14]

 

你可能感兴趣的:(caffe,caffe新增自己的激活函数层)