图的深度优先遍历(DFS)和广度优先遍历(BFS)非递归实现C++

1. 思想

从已发现的顶点集合F中拿出一个顶点,访问该顶点,将该顶点的所有相邻且未被发现的顶点加入F,继续执行上述操作,直至F为空。

若F为栈,则是深度优先,为队列,则是广度优先。

2. 图度优先遍历(DFS)

void DFS(MGraph G)  //栈实现DFS
{
	stack<int> visit;  //栈,已发现,未访问过的点
	int flag[MaxVex];  //标记已访问过的点
	for (int i = 0; i < G.numVer; i++)
		flag[i] = 0;
	int key = 0;   //先入栈再访问
	visit.push(key);
	while (!visit.empty())
	{
		key = visit.top();
		cout << G.ver[key] << " ";
		visit.pop();
		flag[key] = 1;
		for (int i = 0; i < G.numVer; i++)
		{
			if (G.arc[i][key] != INFINITY && flag[i] == 0)
			{
				visit.push(i);
				flag[i] = 2;
			}
		}
	}
}

3. 广度优先遍历(BFS)

void BFS(MGraph G)  //队列实现BFS
{
	queue<int> visit;  //队列,已发现,未访问过的点
	int flag[MaxVex];  //标记已访问过的点
	for (int i = 0; i < G.numVer; i++)
		flag[i] = 0;
	int key = 0;   //先入队再访问
	visit.push(key);
	while (!visit.empty())
	{
		key = visit.front();
		cout << G.ver[key] << " ";
		visit.pop();
		for (int i = 0; i < G.numVer; i++)
		{
			if (G.arc[i][key] != INFINITY && flag[i] == 0)
			{
				visit.push(i);
				flag[i] = 1; //表示已被发现加入队列
			}
		}
	}
}

4. 完整代码

图的深度优先遍历(DFS)和广度优先遍历(BFS)非递归实现C++_第1张图片

#include 
#include 
#include 
#include 
using namespace std;

typedef char VertexType;
typedef int EdgeType;
#define MaxVex 100
#define INFINITY 65535

typedef struct
{
	VertexType ver[MaxVex];
	EdgeType arc[MaxVex][MaxVex];
	int numVer, numEdge;
}MGraph;

MGraph CreatGraph(MGraph G)
{
	cout << "输入顶点数和边数" << endl;
	cin >> G.numVer >> G.numEdge;
	cout << "输入顶点信息" << endl;
	for (int i = 0; i < G.numVer; i++)
		cin >> G.ver[i];
	for (int i = 0; i < G.numVer; i++)
		for (int j = 0; j < G.numVer; j++)
			G.arc[i][j] = INFINITY;
	cout << "输入边信息 i j w" << endl;
	int k, w;
	for (int i = 0; i < G.numEdge; i++)
	{
		cin >> k >> w;
		cin >> G.arc[k][w];
		G.arc[w][k] = G.arc[k][w];
	}
	return G;
}

void DFS(MGraph G)  //栈实现DFS
{
	stack<int> visit;  //栈,已发现,未访问过的点
	int flag[MaxVex];  //标记已访问过的点
	for (int i = 0; i < G.numVer; i++)
		flag[i] = 0;
	int key = 0;   //先入栈再访问
	visit.push(key);
	while (!visit.empty())
	{
		key = visit.top();
		cout << G.ver[key] << " ";
		visit.pop();
		flag[key] = 1;
		for (int i = 0; i < G.numVer; i++)
		{
			if (G.arc[i][key] != INFINITY && flag[i] == 0)
			{
				visit.push(i);
				flag[i] = 2;
			}
		}
	}
}

void BFS(MGraph G)  //队列实现BFS
{
	queue<int> visit;  //队列,已发现,未访问过的点
	int flag[MaxVex];  //标记已访问过的点
	for (int i = 0; i < G.numVer; i++)
		flag[i] = 0;
	int key = 0;   //先入队再访问
	visit.push(key);
	while (!visit.empty())
	{
		key = visit.front();
		cout << G.ver[key] << " ";
		visit.pop();
		for (int i = 0; i < G.numVer; i++)
		{
			if (G.arc[i][key] != INFINITY && flag[i] == 0)
			{
				visit.push(i);
				flag[i] = 1; //表示已被发现加入队列
			}
		}
	}
}

int main()
{
	MGraph G ;
	G.numVer=5;
	G.numEdge = 5;
	G.ver[0] = 'a';
	G.ver[1] = 'b';
	G.ver[2] = 'c';
	G.ver[3] = 'd';
	G.ver[4] = 'e';
	for (int i = 0; i < G.numVer; i++)
		for (int j = 0; j < G.numVer; j++)
			G.arc[i][j] = INFINITY;
	G.arc[0][1] = 1;
	G.arc[0][2] = 2;
	G.arc[1][4] = 4;
	G.arc[1][3] = 4;
	G.arc[2][4] = 4;
	G.arc[1][0] = 1;
	G.arc[2][0] = 2;
	G.arc[4][1] = 4;
	G.arc[3][1] = 4;
	G.arc[4][2] = 4;
	//G = CreatGraph(G);
	BFS(G);
	return 0;
}

你可能感兴趣的:(算法,c++,数据结构,宽度优先,广度优先)