算法面试可能是微软搞出来的面试方法,现在很多公司都在效仿,而且我们的程序员也乐于解算法题,我个人以为,这是应试教育的毒瘤!我在《再谈“我是怎么招程序员”》中比较保守地说过,“问难的算法题并没有错,错的很多面试官只是在肤浅甚至错误地理解着面试算法题的目的。”,今天,我想加强一下这个观点——我反对纯算法题面试!(注意,我说的是纯算法题)
图片源 Wikipedia(点击图片查看词条)
我再次引用我以前的一个观点——
能解算法题并不意味着这个人就有能力就能在工作中解决问题,你可以想想,小学奥数题可能比这些题更难,但并不意味着那些奥数能手就能解决实际问题。
好了,让我们来看一个示例(这个示例是昨天在微博上的一个讨论),这个题是——“找出无序数组中第 2 大的数”,几乎所有的人都用了O(n)的算法,我相信对于我们这些应试教育出来的人来说,不用排序用O(n)算法是很正常的事,连我都不由自主地认为O(n)算法是这个题的标准答案。我们太习惯于标准答案了,这是我国教育最悲哀的地方。(广义的洗脑就是让你的意识依赖于某个标准答案,然后通过给你标准答案让你不会思考而控制你)
功能性需求分析
试想,如果我们在实际工作中得到这样一个题我们会怎么做?我一定会分析这个需求,因为我害怕需求未来会改变,今天你叫我找一个第 2 大的数,明天你找我找一个第 4 大的数,后天叫我找一个第 100 大的数,我不搞死了。需求变化是很正常的事。分析完这个需求后,我会很自然地去写找第K大数的算法——难度一下子就增大了。
很多人会以为找第K大的需求是一种“过早扩展”的思路,不是这样的,我相信我们在实际编码中写过太多这样的程序了,你一定不会设计出这样的函数接口 —— Find2ndMaxNum (int* array, int len),就好像你不会设计出 DestroyBaghdad (); 这样的接口,而是设计一个 DestoryCity ( City& ); 的接口,而把 Baghdad 当成参数传进去!所以,你应该是声明一个叫 FindKthMaxNum (int* array, int len, int kth),把 2 当成参数传进去。这是最基本的编程方法,用数学的话来说,叫代数!最简单的需求分析方法就是把需求翻译成函数名,然后看看是这个接口不是很二?!
(注:不要纠结于 FindMaxNum () 或 FindMinNum () ,因为这两个函数名的业务意义很清楚了,不像 Find2ndMaxNum () 那么二)
非功能性需求分析
性能之类的东西从来都是非功能性需求,对于算法题,我们太喜欢研究算法题的空间和时间复杂度了。我们希望做到空间和时间双丰收,这是算法学术界的风格。所以,习惯于标准答案的我们已经失去思考的能力,只会机械地思考算法之内的性能,而忽略了算法之外的性能。
如果题目是 —— “从无序数组中找到第K个最大的数”,那么,我们一定会去思考用O(n)的线性算法找出第K个数。事实上,也有线性算法 —— STL 中可以用 nth_element 求得类似的第n大的数,其利用快速排序的思想,从数组S中随机找出一个元素X,把数组分为两部分 Sa 和 Sb。Sa 中的元素大于等于X,Sb 中元素小于X。这时有两种情况:1)Sa 中元素的个数小于k,则 Sb 中的第k-Sa 个元素即为第k大数;2) Sa 中元素的个数大于等于k,则返回 Sa 中的第k大数。时间复杂度近似为O(n)。
搞学术的 nuts 们到了这一步一定会欢呼胜利!但是他们哪里能想得到性能的需求分析也是来源自业务的!
我们一说性能,基本上是个人都会问,请求量有多大?如果我们的 FindKthMaxNum ()的请求量是m次,那么你的这个每次都要O(n)复杂度的算法得到的效果就是O(n*m),这一点,是书呆子式的学院派人永远想不到的。因为应试教育让我们不会从实际思考了。
工程式的解法
根据上面的需求分析,有软件工程经验的人的解法通常会这样:
1)把数组排序,从大到小。
2)于是你要第k大的数,就直接访问 array[k]。
排序只需要一次,O(n*log (n)),然后,接下来的m次对 FindKthMaxNum ()的调用全是O(1)的,整体复杂度反而成了线性的。
其实,上述的还不是工程式的最好的解法,因为,在业务中,那数组中的数据可能会是会变化的,所以,如果是用数组排序的话,有数据的改动会让我重新排序,这个太耗性能了,如果实际情况中会有很多的插入或删除操作,那么可以考虑使用B+ 树。
工程式的解法有以下特点:
1)很方便扩展,因为数据排好序了,你还可以方便地支持各种需求,如从第 k1 大到 k2 大的数据(那些学院派写出来的代码在拿到这个需求时又开始挠头苦想了)
2)规整的数据会简化整体的算法复杂度,从而整体性能会更好。(公欲善其事,必先利其器)
3)代码变得清晰,易懂,易维护!(学院派的和 STL 一样的近似O(n)复杂度的算法没人敢动)
争论
你可能会和我有以下争论,
小结
看过这上面的分析,我相信你明白我为什么反对纯算法面试题了。原因就是纯算法的面试题根本不能反应一个程序的综合素质!
那么,在面试中,我们应该要考量程序员的那些综合素质呢?我以为有下面这些东西:
另外,我们知道,对于软件开发来说,在工程上,难是的下面是这些挑战:
所以,对于编程能力上,我们应该主要考量程序员的如下能力:
所以,这段时间,我越来越倾向于问应聘者一些有业务意义的题,而且应增加或更改需求来看程序员的重构代码的能力,写完程序后,让应聘者设计测试案例。
比如:解析加减乘除表达式,字符串转数字,洗牌程序,口令生成器,通过 ip 地址找地点,英汉词典双向检索……
总之,我反对纯算法面试题!