【CVPR2021】文章、代码和数据链接

Awesome-CVPR2021-Low-Level-Vision

整理汇总下今年CVPR图像重建(Image Reconstruction)/底层视觉(Low-Level Vision)相关的论文和代码,括超分辨率,图像去雨,图像去雾,去模糊,去噪,图像恢复,图像增强,图像去摩尔纹,图像修复,图像质量评价,插帧,图像/视频压缩等任务。大家如果觉得有帮助,欢迎star~~

参考或转载请注明出处

CVPR2021官网:http://cvpr2021.thecvf.com

CVPR完整论文列表:https://openaccess.thecvf.com/CVPR2021

开会时间:2021年6月19日-6月25日

论文接收公布时间:2021年2月28日

【Contents】

  • 1.超分辨率(Super-Resolution)
  • 2.图像去雨(Image Deraining)
  • 3.图像去雾(Image Dehazing)
  • 4.去模糊(Deblurring)
  • 5.去噪(Denoising)
  • 6.图像恢复(Image Restoration)
  • 7.图像增强(Image Enhancement)
  • 8.图像去摩尔纹(Image Demoireing)
  • 9.图像修复(Inpainting)
  • 10.图像质量评价(Image Quality Assessment)
  • 11.插帧(Frame Interpolation)
  • 12.视频/图像压缩(Video/Image Compression)
  • 13.其他多任务

1.超分辨率(Super-Resolution)

Unsupervised Degradation Representation Learning for Blind Super-Resolution

  • Paper:https://arxiv.org/abs/2104.00416
  • Code:https://github.com/LongguangWang/DASR

Data-Free Knowledge Distillation For Image Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_Data-Free_Knowledge_Distillation_for_Image_Super-Resolution_CVPR_2021_paper.pdf

AdderSR: Towards Energy Efficient Image Super-Resolution

  • Paper:https://arxiv.org/abs/2009.08891
  • Code:

Exploring Sparsity in Image Super-Resolution for Efficient Inference

  • Paper:https://arxiv.org/abs/2006.09603
  • Code:https://github.com/LongguangWang/SMSR

ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

  • Paper:https://arxiv.org/abs/2103.04039
  • Code:https://github.com/Xiangtaokong/ClassSR

Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images

  • Paper:https://arxiv.org/abs/2011.14631
  • Code:
  • Homepage:http://www.liuyebin.com/crossMPI/crossMPI.html
  • Analysis:CVPR 2021,Cross-MPI以底层场景结构为线索的端到端网络,在大分辨率(x8)差距下也可完成高保真的超分辨率

LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Deng_LAU-Net_Latitude_Adaptive_Upscaling_Network_for_Omnidirectional_Image_Super-Resolution_CVPR_2021_paper.html
  • Code:https://github.com/wangh-allen/LAU-Net

Learning Continuous Image Representation with Local Implicit Image Function

  • Paper:https://arxiv.org/abs/2012.09161
  • Code:https://github.com/yinboc/liif
  • Homepage:https://yinboc.github.io/liif/

Temporal Modulation Network for Controllable Space-Time Video Super-Resolution

  • Paper:https://arxiv.org/abs/2104.10642
  • Code:https://github.com/CS-GangXu/TMNet

Robust Reference-based Super-Resolution via C²-Matching

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Jiang_Robust_Reference-Based_Super-Resolution_via_C2-Matching_CVPR_2021_paper.html
  • Code:https://github.com/yumingj/C2-Matching

GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution

  • Paper:https://ckkelvinchan.github.io/papers/glean.pdf
  • Code: https://github.com/ckkelvinchan/GLEAN
  • Homepage:https://ckkelvinchan.github.io/projects/GLEAN/

BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

  • Paper:https://arxiv.org/abs/2012.02181
  • Code:https://github.com/ckkelvinchan/BasicVSR-IconVSR
  • Homepage:https://ckkelvinchan.github.io/projects/BasicVSR/

Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling

  • Paper:https://arxiv.org/abs/2103.14858
  • Code:https://github.com/ding3820/MIMO-VRN
  • Homepage:https://ding3820.github.io/MIMO-VRN/

MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution

  • Paper:https://jiaya.me/papers/masasr_cvpr21.pdf
  • Code:https://github.com/Jia-Research-Lab/MASA-SR

Flow-based Kernel Prior with Application to Blind Super-Resolution

  • Paper:https://arxiv.org/pdf/2103.15977.pdf
  • Code:https://github.com/JingyunLiang/FKP

Interpreting Super-Resolution Networks with Local Attribution Maps

  • Paper:https://arxiv.org/abs/2011.11036v1
  • Homepage:https://x-lowlevel-vision.github.io/lam.html
  • Analysis:https://zhuanlan.zhihu.com/p/363139999

SRWarp: Generalized Image Super-Resolution under Arbitrary Transformation

  • Paper:https://arxiv.org/abs/2104.10325
  • Code:https://github.com/sanghyun-son/srwarp

KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local Adjustment

  • Paper:https://arxiv.org/abs/2012.08103
  • Code:https://github.com/hjSim/KOALAnet

Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark Dataset and Baseline

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/He_Towards_Fast_and_Accurate_Real-World_Depth_Super-Resolution_Benchmark_Dataset_and_CVPR_2021_paper.html

Tackling the Ill-Posedness of Super-Resolution Through Adaptive Target Generation

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Jo_Tackling_the_Ill-Posedness_of_Super-Resolution_Through_Adaptive_Target_Generation_CVPR_2021_paper.html
  • Code:https://github.com/yhjo09/AdaTarget

Image Super-Resolution With Non-Local Sparse Attention

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Mei_Image_Super-Resolution_With_Non-Local_Sparse_Attention_CVPR_2021_paper.html
  • Code:https://github.com/HarukiYqM/Non-Local-Sparse-Attention

Unsupervised Real-World Image Super Resolution via Domain-Distance Aware Training

  • Paper:https://arxiv.org/abs/2004.01178
  • Code:https://github.com/ShuhangGu/DASR

Single Pair Cross-Modality Super Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Shacht_Single_Pair_Cross-Modality_Super_Resolution_CVPR_2021_paper.html

Learning Scene Structure Guidance via Cross-Task Knowledge Transfer for Single Depth Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Learning_Scene_Structure_Guidance_via_Cross-Task_Knowledge_Transfer_for_Single_CVPR_2021_paper.html
  • Code:https://github.com/Sunbaoli/dsr-distillation

Deep Burst Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Bhat_Deep_Burst_Super-Resolution_CVPR_2021_paper.html
  • Code:https://github.com/goutamgmb/NTIRE21_BURSTSR

Learning the Non-Differentiable Optimization for Blind Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Hui_Learning_the_Non-Differentiable_Optimization_for_Blind_Super-Resolution_CVPR_2021_paper.html

Light Field Super-Resolution With Zero-Shot Learning

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Cheng_Light_Field_Super-Resolution_With_Zero-Shot_Learning_CVPR_2021_paper.html

Space-Time Distillation for Video Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Xiao_Space-Time_Distillation_for_Video_Super-Resolution_CVPR_2021_paper.html

EventZoom: Learning To Denoise and Super Resolve Neuromorphic Events

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Duan_EventZoom_Learning_To_Denoise_and_Super_Resolve_Neuromorphic_Events_CVPR_2021_paper.html

MR Image Super-Resolution With Squeeze and Excitation Reasoning Attention Network

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_MR_Image_Super-Resolution_With_Squeeze_and_Excitation_Reasoning_Attention_Network_CVPR_2021_paper.html

Turning Frequency to Resolution: Video Super-Resolution via Event Cameras

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Jing_Turning_Frequency_to_Resolution_Video_Super-Resolution_via_Event_Cameras_CVPR_2021_paper.html

Fast Bayesian Uncertainty Estimation and Reduction of Batch Normalized Single Image Super-Resolution Network

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Kar_Fast_Bayesian_Uncertainty_Estimation_and_Reduction_of_Batch_Normalized_Single_CVPR_2021_paper.html
  • Code:https://github.com/aupendu/sr-uncertainty

Practical Single-Image Super-Resolution Using Look-Up Table

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Jo_Practical_Single-Image_Super-Resolution_Using_Look-Up_Table_CVPR_2021_paper.html
  • Code:https://github.com/yhjo09/SR-LUT

Interpreting Super-Resolution Networks With Local Attribution Maps

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Gu_Interpreting_Super-Resolution_Networks_With_Local_Attribution_Maps_CVPR_2021_paper.html

Scene Text Telescope: Text-Focused Scene Image Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Chen_Scene_Text_Telescope_Text-Focused_Scene_Image_Super-Resolution_CVPR_2021_paper.html
  • Code:https://github.com/FudanVI/FudanOCR

GAN Prior Embedded Network for Blind Face Restoration in the Wild

  • Paper:https://arxiv.org/abs/2105.06070
  • Code:https://github.com/yangxy/GPEN

2.图像去雨(Image Deraining)

Removing Raindrops and Rain Streaks in One Go

  • Paper:https://www.researchgate.net/publication/350755019_Removing_Raindrops_and_Rain_Streaks_in_One_Go

From Rain Generation to Rain Removal

  • Paper:https://arxiv.org/abs/2008.03580
  • Code:https://github.com/hongwang01/VRGNet

Semi-Supervised Video Deraining Embedded with Dynamical Rain Generator

  • Paper:https://arxiv.org/abs/2103.07939
  • Code:https://github.com/zsyOAOA/S2VD

Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation

  • Paper:https://arxiv.org/abs/2103.13660
  • Code:https://github.com/guyii54/JRGR

3.图像去雾(Image Dehazing)

Learning to Restore Hazy Video: A New Real-World Dataset and A New Method

ContrastiveLearning for Compact Single Image Dehazing

  • Paper:https://arxiv.org/abs/2104.09367
  • Code:https://github.com/GlassyWu/AECR-Net

4.去模糊(Deblurring)

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects

  • Paper:https://arxiv.org/abs/2012.00595
  • Code:https://github.com/rozumden/DeFMO

ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring

  • Paper:https://arxiv.org/abs/2103.04260

Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes

  • Paper:https://arxiv.org/abs/2104.01601
  • Code:https://github.com/zzh-tech/RSCD

Explore Image Deblurring via Blur Kernel Space

  • Paper:https://arxiv.org/abs/2104.00317

Digital Gimbal: End-to-end Deep Image Stabilization with Learnable Exposure Times

  • Paper:https://arxiv.org/abs/2012.04515

5.去噪(Denoising)

Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

  • Paper:https://arxiv.org/abs/2101.02824
  • Code:https://github.com/TaoHuang2018/Neighbor2Neighbor

NBNet: Noise Basis Learning for Image Denoising with Subspace Projection

  • Paper:https://arxiv.org/abs/2012.15028
  • Code:https://github.com/megvii-research/NBNet

Beyond Joint Demosaicking and Denoising

  • Paper:https://arxiv.org/abs/2104.09398
  • Code:https://github.com/sharif-apu/BJDD_CVPR21

Deep Denoising of Flash and No-Flash Pairs for Photography in Low-Light Environments

  • Paper:https://arxiv.org/abs/2012.05116
  • Code:
  • Homepage:https://www.cse.wustl.edu/~zhihao.xia/deepfnf/

Invertible Denoising Network: A Light Solution for Real Noise Removal

  • Paper:https://arxiv.org/abs/2104.10546v1
  • Code:https://github.com/Yang-Liu1082/InvDN

FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise

  • Paper:https://arxiv.org/abs/2105.10967
  • Code:https://github.com/csm9493/FBI-Denoiser

6.图像恢复(Image Restoration)

Multi-Stage Progressive Image Restoration

  • Paper:https://arxiv.org/abs/2102.02808
  • Code:https://github.com/swz30/MPRNet
  • Analysis:

CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models

  • Paper:https://arxiv.org/abs/2012.09491
  • Code:https://github.com/transcendentsky/Film-Recovery

Restoring Extremely Dark Images in Real Time

  • Code:https://github.com/MohitLamba94/Restoring-Extremely-Dark-Images-In-Real-Time

Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration

  • Paper:https://arxiv.org/abs/2012.00301
  • Code:https://github.com/panpanfei/Dual-Pixel-Exploration-Simultaneous-Depth-Estimation-and-Image-Restoration

Progressive Semantic-Aware Style Transformation for Blind Face Restoration

  • Paper:https://arxiv.org/abs/2009.08709
  • Code:https://github.com/chaofengc/PSFRGAN

Towards Real-World Blind Face Restoration with Generative Facial Prior

  • Paper:https://arxiv.org/abs/2101.04061

GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior

  • Paper:https://arxiv.org/abs/2101.04061
  • Code:https://github.com/TencentARC/GFPGAN

7.图像增强(Image Enhancement)

Auto-Exposure Fusion for Single-Image Shadow Removal

  • Paper:https://arxiv.org/abs/2103.01255
  • Code:https://github.com/tsingqguo/exposure-fusion-shadow-removal

Learning Multi-Scale Photo Exposure Correction

  • Paper:https://arxiv.org/abs/2003.11596
  • Code:https://github.com/mahmoudnafifi/Exposure_Correction

Robust Reflection Removal with Reflection-free Flash-only Cues

  • Paper:https://arxiv.org/abs/2103.04273
  • Code:https://github.com/ChenyangLEI/flash-reflection-removal

Learning Temporal Consistency for Low Light Video Enhancement from Single Images

  • Code:https://github.com/zkawfanx/StableLLVE

Removing Diffraction Image Artifacts in Under-Display Camera via Dynamic Skip Connection Network

  • Paper:https://arxiv.org/abs/2104.09556
  • Code:https://github.com/jnjaby/DISCNet

From Shadow Generation to Shadow Removal

  • Paper:https://arxiv.org/abs/2103.12997
  • Code:https://github.com/hhqweasd/G2R-ShadowNet

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency

  • Paper:http://www4.comp.polyu.edu.hk/~cslzhang/paper/PPR10K-cvpr21-paper.pdf
  • Code:https://github.com/csjliang/PPR10K

8.图像去摩尔纹(Image Demoireing)

9.图像修复(Inpainting)

PD-GAN:Probabilistic Diverse GAN for Image Inpainting

  • Paper:https://arxiv.org/abs/2105.02201
  • Code:https://github.com/KumapowerLIU/PD-GAN

Generating Diverse Structure for Image Inpainting with Hierarchical VQ-VAE

  • Paper:https://arxiv.org/abs/2103.10022
  • Code:https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting

Image Inpainting with External-internal Learning and Monochromic Bottleneck

  • Paper:https://www.cqf.io/papers/Image_Inpainting_Monochromic_Bottleneck_CVPR2021.pdf
  • Code:https://github.com/Tengfei-Wang/external-internal-inpainting
  • Homepage:https://tengfei-wang.github.io/EII/index.html

Progressive Temporal Feature Alignment Network for Video Inpainting

  • Paper:https://arxiv.org/abs/2104.03507v1
  • Code:https://github.com/MaureenZOU/TSAM

TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations

  • Paper:https://arxiv.org/abs/2103.15982
  • Code:https://github.com/yzhouas/TransFill-Reference-Inpainting

GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior

  • Paper:https://arxiv.org/abs/2101.04061
  • Homepage:https://xinntao.github.io/projects/gfpgan

10.图像质量评价(Image Quality Assessment)

SDD-FIQA:Unsupervised Face Image Quality Assessment with Similarity DistributionDistance

  • Paper:https://arxiv.org/abs/2103.05977
  • Code:https://github.com/Slinene/SDD-FIQA

Neural Side-by-Side: Predicting Human Preferences for No-Reference Super-Resolution Evaluation

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Khrulkov_Neural_Side-by-Side_Predicting_Human_Preferences_for_No-Reference_Super-Resolution_Evaluation_CVPR_2021_paper.html

11.插帧(Frame Interpolation)

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

  • Paper:https://arxiv.org/abs/2012.08512
  • Code:https://tarun005.github.io/FLAVR/Code
  • Homepage:https://tarun005.github.io/FLAVR/

CDFI: Compression-driven Network Design for Frame Interpolation

  • Paper:https://arxiv.org/abs/2103.10559
  • Code:https://github.com/tding1/Compression-Driven-Frame-Interpolation

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects

  • Paper:https://arxiv.org/abs/2012.00595
  • Code:https://github.com/rozumden/DeFMO

Deep Animation Video Interpolation in the Wild

  • Paper:https://arxiv.org/abs/2104.02495
  • Code:https://github.com/lisiyao21/AnimeInterp

12.视频/图像压缩(Video/Image Compression)

MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing

  • Paper:https://arxiv.org/abs/2103.01786
  • Code:https://github.com/xyvirtualgroup/MetaSCI-CVPR2021

FVC: A New Framework towards Deep Video Compression in Feature Space

  • Paper:https://arxiv.org/abs/2105.09600

Deep Learning in Latent Space for Video Prediction and Compression

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Deep_Learning_in_Latent_Space_for_Video_Prediction_and_Compression_CVPR_2021_paper.html

Deep Perceptual Preprocessing for Video Coding

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Chadha_Deep_Perceptual_Preprocessing_for_Video_Coding_CVPR_2021_paper.html

Checkerboard Context Model for Efficient Learned Image Compression

  • Paper: https://arxiv.org/abs/2103.15306

Slimmable Compressive Autoencoders for Practical Neural Image Compression

  • Paper: https://arxiv.org/abs/2103.15726
  • Code:https://github.com/FireFYF/SlimCAE

Attention-guided Image Compression by Deep Reconstruction of Compressive Sensed Saliency Skeleton

  • Paper: https://arxiv.org/abs/2103.15368
  • Code:https://github.com/xzhang9308/AGDL

Deep Homography for Efficient Stereo Image Compression

  • Paper: http://buaamc2.net/pdf/cvpr21hesic.pdf

How To Exploit the Transferability of Learned Image Compression to Conventional Codecs

  • Paper: https://arxiv.org/abs/2012.01874

Learning Scalable lY=-Constrained Near-Lossless Image Compression via Joint Lossy Image and Residual Compression

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Bai_Learning_Scalable_lY-Constrained_Near-Lossless_Image_Compression_via_Joint_Lossy_Image_CVPR_2021_paper.html

Asymmetric Gained Deep Image Compression With Continuous Rate Adaptation

  • Paper: https://openaccess.thecvf.com/content/CVPR2021/html/Cui_Asymmetric_Gained_Deep_Image_Compression_With_Continuous_Rate_Adaptation_CVPR_2021_paper.html

13.其他多任务

Pre-Trained Image Processing Transformer

  • Paper:https://arxiv.org/abs/2012.00364
  • Code:https://github.com/huawei-noah/Pretrained-IPT
  • Analysis:CVPR 2021 | Transformer进军low-level视觉!北大华为等提出预训练模型IPT

Invertible Image Signal Processing

  • Paper:https://arxiv.org/abs/2103.15061
  • Code:https://github.com/yzxing87/Invertible-ISP

End-to-End Learning for Joint Image Demosaicing, Denoising and Super-Resolution

  • Paper:https://openaccess.thecvf.com/content/CVPR2021/html/Xing_End-to-End_Learning_for_Joint_Image_Demosaicing_Denoising_and_Super-Resolution_CVPR_2021_paper.html

持续更新~

参考

[1] CVPR 2021 结果出炉!最新71篇CVPR’21论文汇总(更新中)

[2] CVPR2021最新信息及已接收论文/代码(持续更新)

[3] 15分钟看完:悉尼科技大学入选 CVPR 2021 的 13 篇论文,都研究什么?

[4] CVPR 2021放榜,腾讯优图20篇论文都在这里了

相关Low-Level-Vision整理

  • Awesome-CVPR2020-Low-Level-Vision
  • Awesome-ECCV2020-Low-Level-Vision

你可能感兴趣的:(深度学习,计算机视觉)