一个简单的卷积神经网络——train_convonet.py

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convolution_net import SimpleConvNet
from trainer import Trainer


# ----------------------------------------读入数据----------------------------------------------------
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据
x_train, t_train = x_train[:5000], t_train[:5000]
x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20

# ------------------------------------------创建网络---------------------------------------------------
network = SimpleConvNet(input_dim=(1, 28, 28),
                        conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

# -------------------------------------------训练网络---------------------------------------------------
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# -----------------------------------------保存参数-----------------------------------------------------
network.save_params("params.pkl")
print("Saved Network Parameters!")

# -----------------------------------------绘制图形---------------------------------------------------------
markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

你可能感兴趣的:(一个简单的卷积神经网络)