es是什么?
es是基于Apache Lucene的开源分布式(全文)搜索引擎,,提供简单的RESTful API来隐藏Lucene的复杂性。
es除了全文搜索引擎之外,还可以这样描述它:
1、分布式的实时文件存储,每个字段都被索引并可被搜索
2、分布式的实时分析搜索引擎
3、可以扩展到成百上千台服务器,处理PB级结构化或非结构化数据。
ES的数据组织类比
Relational DB Elasticsearch
数据库(database) 索引(indices)
表(tables) types
行(rows) documents
字段(columns) fields
mac安装ES
brew update
brew cask install homebrew/cask-versions/java8
brew install elasticsearch
brew services start elasticsearch
http://localhost:9200
Kibana是ES的一个配套工具,可以让用户在网页中与ES进行交互
brew install kibana
brew services start kibana
http://localhost:5601
PUT test/doc/2
{
“name”:“wangfei”,
“age”:27,
“desc”:“热天还不让后人不认同”
}
PUT test/doc/1
{
“name”:“wangjifei”,
“age”:27,
“desc”:“萨芬我反胃为范围额”
}
PUT test/doc/3
{
“name”:“wangyang”,
“age”:30,
“desc”:“点在我心内的几首歌”
}
2、查询指定索引信息
GET test
3、 查询指定文档信息
GET test/doc/1
GET test/doc/2
4、查询对应索引下所有数据
GET test/doc/_search
或
GET test/doc/_search
{
“query”: {
“match_all”: {}
}
}
5、删除指定文档
DELETE test/doc/3
6、删除索引
DELETE test
7、修改指定文档方式
修改时,不指定的属性会自动覆盖,只保留指定的属性(不正确的修改指定文档方式)
PUT test/doc/1
{
“name”:“王计飞”
}
使用POST命令,在id后面跟_update,要修改的内容放到doc文档(属性)中(正确的修改指定文档方式)
POST test/doc/1/_update
{
“doc”:{
“desc”:“生活就像 茫茫海上”
}
}
二、ES查询的两种方式
1、查询字符串搜索
GET test/doc/_search?q=name:wangfei
2、结构化查询(单字段查询,不能多字段组合查询)
GET test/doc/_search
{
“query”:{
“match”:{
“name”:“wang”
}
}
}
三、match系列之操作
1、match系列之match_all (查询全部)
GET test/doc/_search
{
“query”:{
“match_all”: {
}
}
}
2、match系列之match_phrase(短语查询)
准备数据
PUT test1/doc/1
{
“title”: “中国是世界上人口最多的国家”
}
PUT test1/doc/2
{
“title”: “美国是世界上军事实力最强大的国家”
}
PUT test1/doc/3
{
“title”: “北京是中国的首都”
}
查询语句
GET test1/doc/_search
{
“query”:{
“match”:{
“title”:“中国”
}
}
}
输出结果
{
“took” : 241,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : 0.68324494,
“hits” : [
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.68324494,
“_source” : {
“title” : “中国是世界上人口最多的国家”
}
},
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 0.5753642,
“_source” : {
“title” : “北京是中国的首都”
}
},
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.39556286,
“_source” : {
“title” : “美国是世界上军事实力最强大的国家”
}
}
]
}
}
通过观察结果可以发现,虽然如期的返回了中国的文档。但是却把和美国的文档也返回了,这并不是我们想要的。是怎么回事呢?因为这是elasticsearch在内部对文档做分词的时候,对于中文来说,就是一个字一个字分的,所以,我们搜中国,中和国都符合条件,返回,而美国的国也符合。而我们认为中国是个短语,是一个有具体含义的词。所以elasticsearch在处理中文分词方面比较弱势。后面会讲针对中文的插件。但目前我们还有办法解决,那就是使用短语查询 用match_phrase
GET test1/doc/_search
{
“query”:{
“match_phrase”: {
“title”: “中国”
}
}
}
查询结果
{
“took” : 10,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.5753642,
“hits” : [
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.5753642,
“_source” : {
“title” : “中国是世界上人口最多的国家”
}
},
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 0.5753642,
“_source” : {
“title” : “北京是中国的首都”
}
}
]
}
}
我们搜索中国和世界这两个指定词组时,但又不清楚两个词组之间有多少别的词间隔。那么在搜的时候就要留有一些余地。这时就要用到了slop了。相当于正则中的中国.*?世界。这个间隔默认为0
GET test1/doc/_search
{
“query”:{
“match_phrase”: {
“title”: {
“query”: “中国世界”,
“slop”:2
}
}
}
}
查询结果
{
“took” : 23,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.7445889,
“hits” : [
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.7445889,
“_source” : {
“title” : “中国是世界上人口最多的国家”
}
}
]
}
}
3、match系列之match_phrase_prefix(最左前缀查询)智能搜索–以什么开头
数据准备
PUT test2/doc/1
{
“title”: “prefix1”,
“desc”: “beautiful girl you are beautiful so”
}
PUT test2/doc/2
{
“title”: “beautiful”,
“desc”: “I like basking on the beach”
}
搜索特定英文开头的数据
查询语句
GET test2/doc/_search
{
“query”: {
“match_phrase_prefix”: {
“desc”: “bea”
}
}
}
查询结果()
{
“took” : 5,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.39556286,
“hits” : [
{
“_index” : “test2”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.39556286,
“_source” : {
“title” : “prefix1”,
“desc” : “beautiful girl you are beautiful so”
}
},
{
“_index” : “test2”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“title” : “beautiful”,
“desc” : “I like basking on the beach”
}
}
]
}
}
查询短语
GET test2/doc/_search
{
“query”: {
“match_phrase_prefix”: {
“desc”: “you are bea”
}
}
}
查询结果
{
“took” : 28,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.8630463,
“hits” : [
{
“_index” : “test2”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.8630463,
“_source” : {
“title” : “prefix1”,
“desc” : “beautiful girl you are beautiful so”
}
}
]
}
}
max_expansions 参数理解 前缀查询会非常的影响性能,要对结果集进行限制,就加上这个参数。
GET test2/doc/_search
{
“query”: {
“match_phrase_prefix”: {
“desc”: {
“query”: “bea”,
“max_expansions”:1
}
}
}
}
4、match系列之multi_match(多字段查询)
multi_match是要在多个字段中查询同一个关键字 除此之外,mulit_match甚至可以当做match_phrase和match_phrase_prefix使用,只需要指定type类型即可
GET test2/doc/_search
{
“query”: {
“multi_match”: {
“query”: “beautiful”,
“fields”: [“title”,“desc”]
}
}
}
查询结果
{
“took” : 43,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.39556286,
“hits” : [
{
“_index” : “test2”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.39556286,
“_source” : {
“title” : “prefix1”,
“desc” : “beautiful girl you are beautiful so”
}
},
{
“_index” : “test2”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“title” : “beautiful”,
“desc” : “I like basking on the beach”
}
}
]
}
}
当设置属性 type:phrase 时 等同于 短语查询
GET test1/doc/_search
{
“query”: {
“multi_match”: {
“query”: “中国”,
“fields”: [“title”],
“type”: “phrase”
}
}
}
查询结果
{
“took” : 47,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.5753642,
“hits” : [
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.5753642,
“_source” : {
“title” : “中国是世界上人口最多的国家”
}
},
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 0.5753642,
“_source” : {
“title” : “北京是中国的首都”
}
}
]
}
}
当设置属性 type:phrase_prefix时 等同于 最左前缀查询
GET test2/doc/_search
{
“query”: {
“multi_match”: {
“query”: “bea”,
“fields”: [“desc”],
“type”: “phrase_prefix”
}
}
}
查询结果
{
“took” : 5,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.5753642,
“hits” : [
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.5753642,
“_source” : {
“title” : “中国是世界上人口最多的国家”
}
},
{
“_index” : “test1”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 0.5753642,
“_source” : {
“title” : “北京是中国的首都”
}
}
]
}
}
match 查询相关总结
1、match:返回所有匹配的分词。
2、match_all:查询全部。
3、match_phrase:短语查询,在match的基础上进一步查询词组,可以指定slop分词间隔。
4、match_phrase_prefix:前缀查询,根据短语中最后一个词组做前缀匹配,可以应用于搜索提示,但注意和max_expanions搭配。其实默认是50…
5、multi_match:多字段查询,使用相当的灵活,可以完成match_phrase和match_phrase_prefix的工作。
四、ES的排序查询
es 6.8.4版本中,需要分词的字段不可以直接排序,比如:text类型,如果想要对这类字段进行排序,需要特别设置:对字段索引两次,一次索引分词(用于搜索)一次索引不分词(用于排序),es默认生成的text类型字段就是通过这样的方法实现可排序的。
text类型字段排序问题
倒叙排序
GET test/doc/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“age”: {
“order”: “desc”
}
}
]
}
排序结果
{
“took” : 152,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : null,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “3”,
“_score” : null,
“_source” : {
“name” : “wangyang”,
“age” : 30,
“desc” : “点在我心内的几首歌”
},
“sort” : [
30
]
},
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “2”,
“_score” : null,
“_source” : {
“name” : “wangfei”,
“age” : 27,
“desc” : “热天还不让后人不认同”
},
“sort” : [
27
]
},
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “1”,
“_score” : null,
“_source” : {
“name” : “wangjifei”,
“age” : 27,
“desc” : “生活就像 茫茫海上”
},
“sort” : [
27
]
}
]
}
}
升序排序
GET test/doc/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“age”: {
“order”: “asc”
}
}
]
}
五、ES的分页查询
from:从哪开始查 size:返回几条结果
GET test/doc/_search
{
“query”: {
“match_phrase_prefix”: {
“name”: “wang”
}
},
“from”: 0,
“size”: 1
}
查询结果
{
“took” : 3,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“name” : “wangfei”,
“age” : 27,
“desc” : “热天还不让后人不认同”
}
}
]
}
}
六、ES的bool查询 (must、should)
must (must字段对应的是个列表,也就是说可以有多个并列的查询条件,一个文档满足各个子条件后才最终返回)
GET test/doc/_search
{
“query”: {
“bool”: {
“must”: [
{
“match”: {
“name”: “wangfei”
}
}
]
}
}
}
查询结果
{
“took” : 4,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“name” : “wangfei”,
“age” : 27,
“desc” : “热天还不让后人不认同”
}
}
]
}
}
GET test/doc/_search
{
“query”: {
“bool”: {
“must”: [
{
“match”: {
“name”: “wanggfei”
}
},{
“match”: {
“age”: 25
}
}
]
}
}
}
查询结果
{
“took” : 21,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 0,
“max_score” : null,
“hits” : [ ]
}
}
should (只要符合其中一个条件就返回)
GET test/doc/_search
{
“query”: {
“bool”: {
“should”: [
{
“match”: {
“name”: “wangjifei”
}
},{
“match”: {
“age”: 27
}
}
]
}
}
}
查询结果
{
“took” : 34,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 1.287682,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.287682,
“_source” : {
“name” : “wangjifei”,
“age” : 27,
“desc” : “生活就像 茫茫海上”
}
},
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 1.0,
“_source” : {
“name” : “wangfei”,
“age” : 27,
“desc” : “热天还不让后人不认同”
}
}
]
}
}
must_not 顾名思义
GET test/doc/_search
{
“query”: {
“bool”: {
“must_not”: [
{
“match”: {
“name”: “wangjifei”
}
},{
“match”: {
“age”: 27
}
}
]
}
}
}
查询结果
{
“took” : 13,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 1.0,
“_source” : {
“name” : “wangyang”,
“age” : 30,
“desc” : “点在我心内的几首歌”
}
}
]
}
}
filter(条件过滤查询,过滤条件的范围用range表示gt表示大于、lt表示小于、gte表示大于等于、lte表示小于等于)
GET test/doc/_search
{
“query”: {
“bool”: {
“must”: [
{
“match”: {
“name”: “wangjifei”
}
}
],
“filter”: {
“range”: {
“age”: {
“gte”: 10,
“lt”: 27
}
}
}
}
}
}
查询结果
{
“took” : 33,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 0,
“max_score” : null,
“hits” : [ ]
}
}
bool查询总结
must:与关系,相当于关系型数据库中的 and。
should:或关系,相当于关系型数据库中的 or。
must_not:非关系,相当于关系型数据库中的 not。
filter:过滤条件。
range:条件筛选范围。
gt:大于,相当于关系型数据库中的 >。
gte:大于等于,相当于关系型数据库中的 >=。
lt:小于,相当于关系型数据库中的 <。
lte:小于等于,相当于关系型数据库中的 <=。
七、ES之查询结果过滤
####准备数据
PUT test3/doc/1
{
“name”:“顾老二”,
“age”:30,
“from”: “gu”,
“desc”: “皮肤黑、武器长、性格直”,
“tags”: [“黑”, “长”, “直”]
}
现在,在所有的结果中,我只需要查看name和age两个属性,提高查询效率
GET test3/doc/_search
{
“query”: {
“match”: {
“name”: “顾”
}
},
“_source”: [“name”,“age”]
}
查询结果
{
“took” : 58,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test3”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“name” : “顾老二”,
“age” : 30
}
}
]
}
}
八、ES之查询结果高亮显示
ES的默认高亮显示
GET test3/doc/_search
{
“query”: {
“match”: {
“name”: “顾老二”
}
},
“highlight”: {
“fields”: {
“name”: {}
}
}
}
查询结果
{
“took” : 216,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.8630463,
“hits” : [
{
“_index” : “test3”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.8630463,
“_source” : {
“name” : “顾老二”,
“age” : 30,
“from” : “gu”,
“desc” : “皮肤黑、武器长、性格直”,
“tags” : [
“黑”,
“长”,
“直”
]
},
“highlight” : {
“name” : [
“顾老二”
]
}
}
]
}
}
ES自定义高亮显示(在highlight中,pre_tags用来实现我们的自定义标签的前半部分,在这里,我们也可以为自定义的 标签添加属性和样式。post_tags实现标签的后半部分,组成一个完整的标签。至于标签中的内容,则还是交给fields来完成)
GET test3/doc/_search
{
“query”: {
“match”: {
“desc”: “性格直”
}
},
“highlight”: {
“pre_tags”: “”,
“post_tags”: “”,
“fields”: {
“desc”: {}
}
}
}
查询结果
{
“took” : 6,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.8630463,
“hits” : [
{
“_index” : “test3”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.8630463,
“_source” : {
“name” : “顾老二”,
“age” : 30,
“from” : “gu”,
“desc” : “皮肤黑、武器长、性格直”,
“tags” : [
“黑”,
“长”,
“直”
]
},
“highlight” : {
“desc” : [
“皮肤黑、武器长、性格直”
]
}
}
]
}
}
十、ES之精确查询与模糊查询
term查询查找包含文档精确的倒排索引指定的词条。也就是精确查找。
term和match的区别是:match是经过analyer的,也就是说,文档首先被分析器给处理了。根据不同的分析器,分析的结果也稍显不同,然后再根据分词结果进行匹配。term则不经过分词,它是直接去倒排索引中查找了精确的值了。
PUT w1
{
“mappings”: {
“doc”: {
“properties”:{
“t1”:{
“type”: “text”
},
“t2”: {
“type”: “keyword”
}
}
}
}
}
PUT w1/doc/1
{
“t1”: “hi single dog”,
“t2”: “hi single dog”
}
对比两者的不同 (结果就不展示出来了,只展示结果的文字叙述)
GET w1/doc/_search
{
“query”: {
“match”: {
“t1”: “hi single dog”
}
}
}
GET w1/doc/_search
{
“query”: {
“match”: {
“t1”: “hi”
}
}
}
GET w1/doc/_search
{
“query”: {
“match”: {
“t2”: “hi”
}
}
}
GET w1/doc/_search
{
“query”: {
“match”: {
“t2”: “hi single dog”
}
}
}
GET w1/doc/_search
{
“query”: {
“term”: {
“t1”: “hi single dog”
}
}
}
GET w1/doc/_search
{
“query”: {
“term”: {
“t1”: “hi”
}
}
}
GET w1/doc/_search
{
“query”: {
“term”: {
“t2”: “hi single dog”
}
}
}
GET w1/doc/_search
{
“query”: {
“term”: {
“t2”: “hi”
}
}
}
查找多个精确值(terms)
GET test/doc/_search
{
“query”: {
“bool”: {
“should”: [
{
“term”: {
“age”:27
}
},{
“term”:{
“age”:28
}
}
]
}
}
}
GET test/doc/_search
{
“query”: {
“terms”: {
“age”: [
“27”,
“28”
]
}
}
}
两种方式的查询结果都是一下结果
{
“took” : 10,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 1.0,
“_source” : {
“name” : “wangfei”,
“age” : 27,
“desc” : “热天还不让后人不认同”
}
},
{
“_index” : “test”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“name” : “wangjifei”,
“age” : 27,
“desc” : “生活就像 茫茫海上”
}
}
]
}
}
十一、ES的聚合查询avg、max、min、sum
PUT zhifou/doc/1
{
“name”:“顾老二”,
“age”:30,
“from”: “gu”,
“desc”: “皮肤黑、武器长、性格直”,
“tags”: [“黑”, “长”, “直”]
}
PUT zhifou/doc/2
{
“name”:“大娘子”,
“age”:18,
“from”:“sheng”,
“desc”:“肤白貌美,娇憨可爱”,
“tags”:[“白”, “富”,“美”]
}
PUT zhifou/doc/3
{
“name”:“龙套偏房”,
“age”:22,
“from”:“gu”,
“desc”:“mmp,没怎么看,不知道怎么形容”,
“tags”:[“造数据”, “真”,“难”]
}
PUT zhifou/doc/4
{
“name”:“石头”,
“age”:29,
“from”:“gu”,
“desc”:“粗中有细,狐假虎威”,
“tags”:[“粗”, “大”,“猛”]
}
PUT zhifou/doc/5
{
“name”:“魏行首”,
“age”:25,
“from”:“广云台”,
“desc”:“仿佛兮若轻云之蔽月,飘飘兮若流风之回雪,mmp,最后竟然没有嫁给顾老二!”,
“tags”:[“闭月”,“羞花”]
}
GET zhifou/doc/_search
{
“query”: {
“match_all”: {}
}
}
需求1、查询from是gu的人的平均年龄。
GET zhifou/doc/_search
{
“query”: {
“match”: {
“from”: “gu”
}
},
“aggs”: {
“my_avg”: {
“avg”: {
“field”: “age”
}
}
},
“_source”: [“name”, “age”]
}
查询结果
{
“took” : 83,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : 0.6931472,
“hits” : [
{
“_index” : “zhifou”,
“_type” : “doc”,
“_id” : “4”,
“_score” : 0.6931472,
“_source” : {
“name” : “石头”,
“age” : 29
}
},
{
“_index” : “zhifou”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“name” : “顾老二”,
“age” : 30
}
},
{
“_index” : “zhifou”,
“_type” : “doc”,
“_id” : “3”,
“_score” : 0.2876821,
“_source” : {
“name” : “龙套偏房”,
“age” : 22
}
}
]
},
“aggregations” : {
“my_avg” : {
“value” : 27.0
}
}
}
上例中,首先匹配查询from是gu的数据。在此基础上做查询平均值的操作,这里就用到了聚合函数,其语法被封装在aggs中,而my_avg则是为查询结果起个别名,封装了计算出的平均值。那么,要以什么属性作为条件呢?是age年龄,查年龄的什么呢?是avg,查平均年龄。
如果只想看输出的值,而不关心输出的文档的话可以通过size=0来控制
GET zhifou/doc/_search
{
“query”: {
“match”: {
“from”: “gu”
}
},
“aggs”:{
“my_avg”:{
“avg”: {
“field”: “age”
}
}
},
“size”:0,
“_source”:[“name”,“age”]
}
查询结果
{
“took” : 35,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“my_avg” : {
“value” : 27.0
}
}
}
需求2、查询年龄的最大值
GET zhifou/doc/_search
{
“query”: {
“match_all”: {}
},
“aggs”: {
“my_max”: {
“max”: {
“field”: “age”
}
}
},
“size”: 0,
“_source”: [“name”,“age”,“from”]
}
查询结果
{
“took” : 10,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 5,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“my_max” : {
“value” : 30.0
}
}
}
需求3、查询年龄的最小值
GET zhifou/doc/_search
{
“query”: {
“match_all”: {}
},
“aggs”: {
“my_min”: {
“min”: {
“field”: “age”
}
}
},
“size”: 0,
“_source”: [“name”,“age”,“from”]
}
查询结果
{
“took” : 2,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 5,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“my_min” : {
“value” : 18.0
}
}
}
需求4、查询符合条件的年龄之和
GET zhifou/doc/_search
{
“query”: {
“match”: {
“from”: “gu”
}
},
“aggs”: {
“my_sum”: {
“sum”: {
“field”: “age”
}
}
},
“size”: 0,
“_source”: [“name”,“age”,“from”]
}
查询结果
{
“took” : 4,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 3,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“my_sum” : {
“value” : 81.0
}
}
}
十二、ES的分组查询
需求: 要查询所有人的年龄段,并且按照1520,2025,25~30分组,并且算出每组的平均年龄。
GET zhifou/doc/_search
{
“size”: 0,
“query”: {
“match_all”: {}
},
“aggs”: {
“age_group”: {
“range”: {
“field”: “age”,
“ranges”: [
{
“from”: 15,
“to”: 20
},
{
“from”: 20,
“to”: 25
},
{
“from”: 25,
“to”: 30
}
]
}
}
}
}
查询结果
{
“took” : 9,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 5,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“age_group” : {
“buckets” : [
{
“key” : “15.0-20.0”,
“from” : 15.0,
“to” : 20.0,
“doc_count” : 1
},
{
“key” : “20.0-25.0”,
“from” : 20.0,
“to” : 25.0,
“doc_count” : 1
},
{
“key” : “25.0-30.0”,
“from” : 25.0,
“to” : 30.0,
“doc_count” : 2
}
]
}
}
}
上例中,在aggs的自定义别名age_group中,使用range来做分组,field是以age为分组,分组使用ranges来做,from和to是范围
接下来,我们就要对每个小组内的数据做平均年龄处理。
GET zhifou/doc/_search
{
“size”: 0,
“query”: {
“match_all”: {}
},
“aggs”: {
“age_group”: {
“range”: {
“field”: “age”,
“ranges”: [
{
“from”: 15,
“to”: 20
},
{
“from”: 20,
“to”: 25
},
{
“from”: 25,
“to”: 30
}
]
},
“aggs”: {
“my_avg”: {
“avg”: {
“field”: “age”
}
}
}
}
}
}
查询结果
{
“took” : 1,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 5,
“max_score” : 0.0,
“hits” : [ ]
},
“aggregations” : {
“age_group” : {
“buckets” : [
{
“key” : “15.0-20.0”,
“from” : 15.0,
“to” : 20.0,
“doc_count” : 1,
“my_avg” : {
“value” : 18.0
}
},
{
“key” : “20.0-25.0”,
“from” : 20.0,
“to” : 25.0,
“doc_count” : 1,
“my_avg” : {
“value” : 22.0
}
},
{
“key” : “25.0-30.0”,
“from” : 25.0,
“to” : 30.0,
“doc_count” : 2,
“my_avg” : {
“value” : 27.0
}
}
]
}
}
}
ES的聚合查询的总结:聚合函数的使用,一定是先查出结果,然后对结果使用聚合函数做处理
avg:求平均
max:最大值
min:最小值
sum:求和
十三、ES之Mappings
GET test
查询结果
{
“test” : {
“aliases” : { },
“mappings” : {
“doc” : {
“properties” : {
“age” : {
“type” : “long”
},
“desc” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
},
“name” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
}
}
}
},
“settings” : {
“index” : {
“creation_date” : “1569133097594”,
“number_of_shards” : “5”,
“number_of_replicas” : “1”,
“uuid” : “AztO9waYQiyHvzP6dlk4tA”,
“version” : {
“created” : “6080299”
},
“provided_name” : “test”
}
}
}
}
由返回结果可以看到,分为两大部分:
第一部分关于t1索引类型相关的,包括该索引是否有别名aliases,然后就是mappings信息,
包括索引类型doc,各字段的详细映射关系都收集在properties中。
另一部分是关于索引t1的settings设置。包括该索引的创建时间,主副分片的信息,UUID等等。
映射就是在创建索引的时候,有更多定制的内容,更加的贴合业务场景。
用来定义一个文档及其包含的字段如何存储和索引的过程。
2. 字段的数据类型
简单类型如文本(text)、关键字(keyword)、日期(data)、整形(long)、双精度
(double)、布尔(boolean)或ip。 可以是支持JSON的层次结构性质的类型,如对象或嵌套。
或者一种特殊类型,如geo_point、geo_shape或completion。为了不同的目的,
以不同的方式索引相同的字段通常是有用的。例如,字符串字段可以作为全文搜索的文本字段进行索引,
也可以作为排序或聚合的关键字字段进行索引。或者,可以使用标准分析器、英语分析器和
法语分析器索引字符串字段。这就是多字段的目的。大多数数据类型通过fields参数支持多字段。
一个简单的映射示例
PUT mapping_test
{
“mappings”: {
“test1”:{
“properties”:{
“name”:{“type”: “text”},
“age”:{“type”:“long”}
}
}
}
}
我们在创建索引PUT mapping_test1的过程中,为该索引定制化类型(设计表结构),添加一个映射类型test1;指定字段或者属性都在properties内完成。
GET mapping_test
查询结果
{
“mapping_test” : {
“aliases” : { },
“mappings” : {
“test1” : {
“properties” : {
“age” : {
“type” : “long”
},
“name” : {
“type” : “text”
}
}
}
},
“settings” : {
“index” : {
“creation_date” : “1570794586526”,
“number_of_shards” : “5”,
“number_of_replicas” : “1”,
“uuid” : “P4-trriPTxq-nJj89iYXZA”,
“version” : {
“created” : “6080299”
},
“provided_name” : “mapping_test”
}
}
}
}
返回的结果中你肯定很熟悉!映射类型是test1,具体的属性都被封装在properties中。
PUT test4
{
“mappings”: {
“doc”:{
“properties”: {
“name”: {
“type”: “text”
},
“age”: {
“type”: “long”
}
}
}
}
}
GET test4/_mapping
查询结果
{
“test4” : {
“mappings” : {
“doc” : {
“properties” : {
“age” : {
“type” : “long”
},
“name” : {
“type” : “text”
},
“sex” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
}
}
}
}
}
}
#####添加数据
PUT test4/doc/1
{
“name”:“wangjifei”,
“age”:“18”,
“sex”:“不详”
}
#####查看数据
GET test4/doc/_search
{
“query”: {
“match_all”: {}
}
}
查询结果
{
“took” : 8,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test4”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“name” : “wangjifei”,
“age” : “18”,
“sex” : “不详”
}
}
]
}
}
测试静态映射:当elasticsearch察觉到有新增字段时,因为dynamic:false的关系,会忽略该字段,但是仍会存储该字段。
#####创建静态mapping
PUT test5
{
“mappings”: {
“doc”:{
“dynamic”:false,
“properties”: {
“name”: {
“type”: “text”
},
“age”: {
“type”: “long”
}
}
}
}
}
#####插入数据
PUT test5/doc/1
{
“name”:“wangjifei”,
“age”:“18”,
“sex”:“不详”
}
####条件查询
GET test5/doc/_search
{
“query”: {
“match”: {
“sex”: “不详”
}
}
}
查询结果
{
“took” : 9,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 0,
“max_score” : null,
“hits” : [ ]
}
}
#####查看所有数据
GET /test5/doc/_search
{
“query”: {
“match_all”: {}
}
}
查询结果
{
“took” : 1,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test5”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“name” : “wangjifei”,
“age” : “18”,
“sex” : “不详”
}
}
]
}
}
测试严格映射:当elasticsearch察觉到有新增字段时,因为dynamic:strict 的关系,就会报错,不能插入成功。
#####创建严格mapping
PUT test6
{
“mappings”: {
“doc”:{
“dynamic”:“strict”,
“properties”: {
“name”: {
“type”: “text”
},
“age”: {
“type”: “long”
}
}
}
}
}
#####插入数据
PUT test6/doc/1
{
“name”:“wangjifei”,
“age”:“18”,
“sex”:“不详”
}
插入结果
{
“error”: {
“root_cause”: [
{
“type”: “strict_dynamic_mapping_exception”,
“reason”: “mapping set to strict, dynamic introduction of [sex] within [doc] is not allowed”
}
],
“type”: “strict_dynamic_mapping_exception”,
“reason”: “mapping set to strict, dynamic introduction of [sex] within [doc] is not allowed”
},
“status”: 400
}
小结: 动态映射(dynamic:true):动态添加新的字段(或缺省)。 静态映射(dynamic:false):忽略新的字段。在原有的映射基础上,当有新的字段时,不会主动的添加新的映射关系,只作为查询结果出现在查询中。 严格模式(dynamic:strict):如果遇到新的字段,就抛出异常。一般静态映射用的较多。就像HTML的img标签一样,src为自带的属性,你可以在需要的时候添加id或者class属性。当然,如果你非常非常了解你的数据,并且未来很长一段时间不会改变,strict不失为一个好选择。
PUT test7
{
“mappings”: {
“doc”: {
“properties”: {
“name”: {
“type”: “text”,
“index”: true
},
“age”: {
“type”: “long”,
“index”: false
}
}
}
}
}
####插入数据
PUT test7/doc/1
{
“name”:“wangjifei”,
“age”:18
}
####条件查询数据
GET test7/doc/_search
{
“query”: {
“match”: {
“name”: “wangjifei”
}
}
}
查询结果
{
“took” : 18,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test7”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“name” : “wangjifei”,
“age” : 18
}
}
]
}
}
#####条件查询
GET test7/doc/_search
{
“query”: {
“match”: {
“age”: 18
}
}
}
查询结果
{
“error”: {
“root_cause”: [
{
“type”: “query_shard_exception”,
“reason”: “failed to create query: {\n “match” : {\n “age” : {\n “query” : 18,\n “operator” : “OR”,\n “prefix_length” : 0,\n “max_expansions” : 50,\n “fuzzy_transpositions” : true,\n “lenient” : false,\n “zero_terms_query” : “NONE”,\n “auto_generate_synonyms_phrase_query” : true,\n “boost” : 1.0\n }\n }\n}”,
“index_uuid”: “fzN9frSZRy2OzinRjeMKGA”,
“index”: “test7”
}
],
“type”: “search_phase_execution_exception”,
“reason”: “all shards failed”,
“phase”: “query”,
“grouped”: true,
“failed_shards”: [
{
“shard”: 0,
“index”: “test7”,
“node”: “INueKtviRpO1dbNWngcjJA”,
“reason”: {
“type”: “query_shard_exception”,
“reason”: “failed to create query: {\n “match” : {\n “age” : {\n “query” : 18,\n “operator” : “OR”,\n “prefix_length” : 0,\n “max_expansions” : 50,\n “fuzzy_transpositions” : true,\n “lenient” : false,\n “zero_terms_query” : “NONE”,\n “auto_generate_synonyms_phrase_query” : true,\n “boost” : 1.0\n }\n }\n}”,
“index_uuid”: “fzN9frSZRy2OzinRjeMKGA”,
“index”: “test7”,
“caused_by”: {
“type”: “illegal_argument_exception”,
“reason”: “Cannot search on field [age] since it is not indexed.”
}
}
}
]
},
“status”: 400
}
PUT test8
{
“mappings”: {
“doc”: {
“dynamic”:false,
“properties”: {
“first_name”:{
“type”: “text”,
“copy_to”: “full_name”
},
“last_name”: {
“type”: “text”,
“copy_to”: “full_name”
},
“full_name”: {
“type”: “text”
}
}
}
}
}
#####插入数据
PUT test8/doc/1
{
“first_name”:“tom”,
“last_name”:“ben”
}
PUT test8/doc/2
{
“first_name”:“john”,
“last_name”:“smith”
}
#####查询所有
GET test8/doc/_search
{
“query”: {
“match_all”: {}
}
}
查询结果
{
“took” : 4,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 1.0,
“_source” : {
“first_name” : “john”,
“last_name” : “smith”
}
},
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
#####条件查询
GET test8/doc/_search
{
“query”: {
“match”: {
“first_name”: “tom”
}
}
}
查询结果
{
“took” : 2,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
######条件查询
GET test8/doc/_search
{
“query”: {
“match”: {
“full_name”: “ben”
}
}
}
查询结果
{
“took” : 3,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
上例中,我们将first_name和last_name都复制到full_name中。并且使用full_name查询也返回了结果
既要查询tom还要查询smith该怎么办?
GET test8/doc/_search
{
“query”: {
“match”: {
“full_name”: {
“query”: “tom smith”,
“operator”: “or”
}
}
}
}
查询结果
{
“took” : 3,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “john”,
“last_name” : “smith”
}
},
{
“_index” : “test8”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
operator参数为多个条件的查询关系也可以是and
上面的查询还可以简写成一下:
GET test8/doc/_search
{
“query”: {
“match”: {
“full_name”: “tom smith”
}
}
}
copy_to还支持将相同的属性值复制给不同的字段。
PUT test9
{
“mappings”: {
“doc”: {
“dynamic”:false,
“properties”: {
“first_name”:{
“type”: “text”,
“copy_to”: [“full_name1”,“full_name2”]
},
“last_name”: {
“type”: “text”,
“copy_to”: [“full_name1”,“full_name2”]
},
“full_name1”: {
“type”: “text”
},
“full_name2”:{
“type”:“text”
}
}
}
}
}
####插入数据
PUT test9/doc/1
{
“first_name”:“tom”,
“last_name”:“ben”
}
PUT test9/doc/2
{
“first_name”:“john”,
“last_name”:“smith”
}
####条件查询
GET test9/doc/_search
{
“query”: {
“match”: {
“full_name1”: “tom smith”
}
}
}
查询结果
{
“took” : 7,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test9”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “john”,
“last_name” : “smith”
}
},
{
“_index” : “test9”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
#####条件查询
GET test9/doc/_search
{
“query”: {
“match”: {
“full_name2”: “tom smith”
}
}
}
查询结果
{
“took” : 7,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 2,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test9”,
“_type” : “doc”,
“_id” : “2”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “john”,
“last_name” : “smith”
}
},
{
“_index” : “test9”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“first_name” : “tom”,
“last_name” : “ben”
}
}
]
}
}
full_name1 full_name2两个字段都可以查出来
PUT test10/doc/1
{
“name”:“wangjifei”,
“age”:18,
“info”:{
“addr”:“北京”,
“tel”:“18500327026”
}
}
GET test10
查询结果
{
“test10” : {
“aliases” : { },
“mappings” : {
“doc” : {
“properties” : {
“age” : {
“type” : “long”
},
“info” : {
“properties” : {
“addr” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
},
“tel” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
}
}
},
“name” : {
“type” : “text”,
“fields” : {
“keyword” : {
“type” : “keyword”,
“ignore_above” : 256
}
}
}
}
}
},
“settings” : {
“index” : {
“creation_date” : “1570975011394”,
“number_of_shards” : “5”,
“number_of_replicas” : “1”,
“uuid” : “YvMGDHxkSri0Lgx6GGXiNw”,
“version” : {
“created” : “6080299”
},
“provided_name” : “test10”
}
}
}
}
现在如果要以info中的tel为条件怎么写查询语句呢?
GET test10/doc/_search
{
“query”: {
“match”: {
“info.tel”: “18500327026”
}
}
}
查询结果
{
“took” : 5,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test10”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“name” : “wangjifei”,
“age” : 18,
“info” : {
“addr” : “北京”,
“tel” : “18500327026”
}
}
}
]
}
}
info既是一个属性,也是一个对象,我们称为info这类字段为对象型字段。该对象内又包含addr和tel两个字段,如上例这种以嵌套内的字段为查询条件的话,查询语句可以以字段点子字段的方式来写即可
PUT test11
{
“mappings”: {
“doc”: {
“properties”: {
“name”: {
“type”: “text”
}
}
}
},
“settings”: {
“number_of_replicas”: 1,
“number_of_shards”: 5
}
}
number_of_shards是主分片数量(每个索引默认5个主分片),而number_of_replicas是复制分片,默认一个主分片搭配一个复制分片。
8. ES 之mappings的ignore_above参数
ignore_above参数仅针对于keyword类型有用
PUT test12
{
“mappings”: {
“doc”: {
“properties”: {
“name”: {
“type”: “text”,
“ignore_above”:5
}
}
}
}
}
显示结果
{
“error”: {
“root_cause”: [
{
“type”: “mapper_parsing_exception”,
“reason”: “Mapping definition for [name] has unsupported parameters: [ignore_above : 5]”
}
],
“type”: “mapper_parsing_exception”,
“reason”: “Failed to parse mapping [doc]: Mapping definition for [name] has unsupported parameters: [ignore_above : 5]”,
“caused_by”: {
“type”: “mapper_parsing_exception”,
“reason”: “Mapping definition for [name] has unsupported parameters: [ignore_above : 5]”
}
},
“status”: 400
}
PUT test12
{
“mappings”: {
“doc”: {
“properties”: {
“name”: {
“type”: “keyword”,
“ignore_above”:5
}
}
}
}
}
PUT test12/doc/1
{
“name”:“wangjifei”
}
GET test12/doc/_search
{
“query”: {
“match_all”: {}
}
}
查询结果
{
“took” : 1,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test12”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“name” : “wangjifei”
}
}
]
}
}
######这样查询不能查询出结果
GET test12/doc/_search
{
“query”: {
“match”: {
“name”: “wangjifei”
}
}
}
查询结果
{
“took” : 1,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 0,
“max_score” : null,
“hits” : [ ]
}
}
上面的例子证明超过ignore_above设定的值后会被存储但不会建立索引
那么如果字符串的类型是text时能用ignore_above吗,答案是能,但要特殊设置:
PUT test13
{
“mappings”: {
“doc”:{
“properties”:{
“name1”:{
“type”:“keyword”,
“ignore_above”:5
},
“name2”:{
“type”:“text”,
“fields”:{
“keyword”:{
“type”:“keyword”,
“ignore_above”: 10
}
}
}
}
}
}
}
PUT test13/doc/1
{
“name1”:“wangfei”,
“name2”:“wangjifei hello”
}
GET test13/doc/_search
{
“query”: {
“match_all”: {}
}
}
查询结果
{
“took” : 4,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 1.0,
“hits” : [
{
“_index” : “test13”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 1.0,
“_source” : {
“name1” : “wangfei”,
“name2” : “wangjifei hello”
}
}
]
}
}
GET test13/doc/_search
{
“query”: {
“match”: {
“name1”: “wangfei”
}
}
}
查询结果
{
“took” : 2,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 0,
“max_score” : null,
“hits” : [ ]
}
}
GET test13/doc/_search
{
“query”: {
“match”: {
“name2”: “wangjifei”
}
}
}
查询结果
{
“took” : 1,
“timed_out” : false,
“_shards” : {
“total” : 5,
“successful” : 5,
“skipped” : 0,
“failed” : 0
},
“hits” : {
“total” : 1,
“max_score” : 0.2876821,
“hits” : [
{
“_index” : “test13”,
“_type” : “doc”,
“_id” : “1”,
“_score” : 0.2876821,
“_source” : {
“name1” : “wangfei”,
“name2” : “wangjifei hello”
}
}
]
}
}