求
∑ i = 1 n ∑ j = 1 m lcm ( i , j ) ( m o d 20101009 ) \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\text{lcm}(i,j)(\bmod 20101009) i=1∑nj=1∑mlcm(i,j)(mod20101009)
容易想到原式等价于
∑ i = 1 n ∑ j = 1 m i ∗ j gcd ( i , j ) \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{i* j}{\gcd(i,j)} i=1∑nj=1∑mgcd(i,j)i∗j
枚举 i , j i,j i,j的最大公约数 d d d,显然 gcd ( i d , j d ) = 1 \gcd(\frac id,\frac jd)=1 gcd(di,dj)=1,即 i d \frac id di和 j d \frac jd dj互质
∑ i = 1 n ∑ j = 1 m ∑ d ∣ i , d ∣ j , gcd ( i d , j d ) = 1 i ∗ j d \sum\limits_{i=1}^{n}\sum\limits_{j=1}^m\sum\limits_{d|i,d|j,\gcd(\frac id,\frac jd)=1}\frac{i*j}d i=1∑nj=1∑md∣i,d∣j,gcd(di,dj)=1∑di∗j
变换求和顺序
∑ d = 1 n d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ( i , j ) = 1 ] i ∗ j \sum\limits_{d=1}^{n}d\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]i*j d=1∑ndi=1∑⌊dn⌋j=1∑⌊dm⌋[gcd(i,j)=1]i∗j
记 s u m ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ gcd ( i , j ) = 1 ] i ∗ j sum(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=1]i*j sum(n,m)=i=1∑nj=1∑m[gcd(i,j)=1]i∗j
对其进行化简,用 ε ( gcd ( i , j ) ) \varepsilon(\gcd(i,j)) ε(gcd(i,j))替换 [ gcd ( i , j ) = 1 ] [\gcd(i,j)=1] [gcd(i,j)=1]
∑ i = 1 n ∑ j = 1 m ∑ d ∣ gcd ( i , j ) μ ( d ) ∗ i ∗ j \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{d|\gcd(i,j)}\mu(d)*i*j i=1∑nj=1∑md∣gcd(i,j)∑μ(d)∗i∗j
转化为首先枚举约数
∑ d = 1 min ( n , m ) ∑ d ∣ i n ∑ d ∣ j m μ ( d ) ∗ i ∗ j \sum\limits_{d=1}^{\min(n,m)}\sum\limits_{d|i}^{n}\sum\limits_{d|j}^{m}\mu(d)*i*j d=1∑min(n,m)d∣i∑nd∣j∑mμ(d)∗i∗j
设 i = i ′ ∗ d , j = j ′ ∗ d i=i'*d,j=j'*d i=i′∗d,j=j′∗d,则可以进一步转化
∑ d = 1 min ( n , m ) μ ( d ) ∗ d 2 ∗ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ∗ j \sum\limits_{d=1}^{\min(n,m)}\mu(d)*d^2*\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}i*j d=1∑min(n,m)μ(d)∗d2∗i=1∑⌊dn⌋j=1∑⌊dm⌋i∗j
前半段可以处理前缀和,后半段可以 O ( 1 ) O(1) O(1)求,设
Q ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ∗ j = n ∗ ( n + 1 ) 2 ∗ m ∗ ( m + 1 ) 2 Q(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}i*j=\frac{n*(n+1)}{2}*\frac{m*(m+1)}{2} Q(n,m)=i=1∑nj=1∑mi∗j=2n∗(n+1)∗2m∗(m+1)
显然可以 O ( 1 ) O(1) O(1)求解
到现在
s u m ( n , m ) = ∑ d = 1 min ( n , m ) μ ( d ) ∗ d 2 ∗ Q ( ⌊ n d ⌋ , ⌊ m d ⌋ ) sum(n,m)=\sum\limits_{d=1}^{\min(n,m)}\mu(d)*d^2*Q(\lfloor\frac nd \rfloor,\lfloor\frac md\rfloor) sum(n,m)=d=1∑min(n,m)μ(d)∗d2∗Q(⌊dn⌋,⌊dm⌋)
可以用数论分块求解
回带到原式中
∑ d = 1 min ( n , m ) d ∗ s u m ( ⌊ n d ⌋ , ⌊ m d ⌋ ) \sum\limits_{d=1}^{\min(n, m)}d*sum(\lfloor\frac nd \rfloor,\lfloor\frac md\rfloor) d=1∑min(n,m)d∗sum(⌊dn⌋,⌊dm⌋)
又可以数论分块求解了
然后就做完啦
/*
Author:loceaner
*/
#include
#include
#include
#include
#include
#define int long long
using namespace std;
const int A = 1e7 + 11;
const int B = 1e6 + 11;
const int mod = 20101009;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
bool vis[A];
int n, m, mu[A], p[B], sum[A], cnt;
void getmu() {
mu[1] = 1;
int k = min(n, m);
for (int i = 2; i <= k; i++) {
if (!vis[i]) p[++cnt] = i, mu[i] = -1;
for (int j = 1; j <= cnt && i * p[j] <= k; ++j) {
vis[i * p[j]] = 1;
if (i % p[j] == 0) break;
mu[i * p[j]] = -mu[i];
}
}
for (int i = 1; i <= k; i++) sum[i] = (sum[i - 1] + i * i % mod * mu[i]) % mod;
}
int Sum(int x, int y) {
return (x * (x + 1) / 2 % mod) * (y * (y + 1) / 2 % mod) % mod;
}
int solve2(int x, int y) {
int res = 0;
for (int i = 1, j; i <= min(x, y); i = j + 1) {
j = min(x / (x / i), y / (y / i));
res = (res + 1LL * (sum[j] - sum[i - 1] + mod) * Sum(x / i, y / i) % mod) % mod;
}
return res;
}
int solve(int x, int y) {
int res = 0;
for (int i = 1, j; i <= min(x, y); i = j + 1) {
j = min(x / (x / i), y / (y / i));
res = (res + 1LL * (j - i + 1) * (i + j) / 2 % mod * solve2(x / i, y / i) % mod) % mod;
}
return res;
}
signed main() {
n = read(), m = read();
getmu();
cout << solve(n, m) << '\n';
}