采用docker部署,将相关文件拷贝到容器中Serving readme
执行命令后,会在当前目录下生成2个目录:serving_server 和 serving_client。serving_server目录包含服务器端所需的模型和配置,需将其拷贝到服务器端容器中;serving_client目录包含客户端所需的配置,需将其拷贝到客户端容器中。
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from functools import partial
import numpy as np
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from paddlenlp.data import Stack, Tuple, Pad
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--params_path", type=str, default='./checkpoints/model_state.pdparams', help="The path to model parameters to be loaded.")
parser.add_argument("--output_path", type=str, default='./deploy/output', help="The path of model parameter in static graph to be saved.")
args = parser.parse_args()
# yapf: enable
if __name__ == "__main__":
# The number of labels should be in accordance with the training dataset.
label_map = {0: 'negative', 1: 'positive'}
model = ppnlp.transformers.ErnieForSequenceClassification.from_pretrained(
"ernie-tiny", num_classes=len(label_map))
if args.params_path and os.path.isfile(args.params_path):
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
model.eval()
# Convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, None], dtype="int64"), # input_ids
paddle.static.InputSpec(
shape=[None, None], dtype="int64") # segment_ids
])
# Save in static graph model.
save_path = os.path.join(args.output_path, "inference")
paddle.jit.save(model, save_path)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
import paddle_serving_client.io as serving_io
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--inference_model_dir",
type=str,
default="../output",
help="The directory of the inference model.")
parser.add_argument(
"--model_file",
type=str,
default='inference.pdmodel',
help="The inference model file name.")
parser.add_argument(
"--params_file",
type=str,
default='inference.pdiparams',
help="The input inference parameters file name.")
return parser.parse_args()
if __name__ == '__main__':
paddle.enable_static()
args = parse_args()
feed_names, fetch_names = serving_io.inference_model_to_serving(
dirname=args.inference_model_dir,
serving_server="serving_server",
serving_client="serving_client",
model_filename=args.model_file,
params_filename=args.params_file)
print("model feed_names : %s" % feed_names)
print("model fetch_names : %s" % fetch_names)