- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 实时姿态估计:MediaPipe人体关键点检测实战教程
AIGC应用创新大全
ai
实时姿态估计:MediaPipe人体关键点检测实战教程关键词:实时姿态估计、MediaPipe、人体关键点检测、BlazePose、计算机视觉摘要:本文将带你从0到1掌握MediaPipe人体关键点检测技术。我们会用“给人体贴标记”的生活比喻解释核心概念,通过Python代码实战演示如何在5分钟内实现实时姿态估计,并结合健身动作分析、AR互动等真实场景,帮你理解这项技术的底层逻辑和应用价值。无论你
- 基于深度学习的IMU解算
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的惯性测量单元(IMU)解算是一种利用深度学习算法处理和分析IMU数据,以提升姿态估计、运动轨迹跟踪和定位精度的方法。IMU通常由加速度计、陀螺仪和磁力计组成,广泛应用于智能手机、无人机、机器人、虚拟现实(VR)和增强现实(AR)等领域。以下是关于这一领域的系统介绍:1.任务和目标IMU解算的主要任务是从IMU传感器数据中准确估计物体的姿态(姿态角、姿态矩阵或四元数)、速度和位置。具体
- 深入了解MediaPipe:谷歌开源的跨平台视觉AI框架
云探
手势识别人工智能python手势识别MediaPipe
在计算机视觉领域,实时性、跨平台支持与开发效率一直是开发者追求的目标。Google推出的开源框架MediaPipe正是为了解决这些问题而生。无论你是从事人脸识别、姿态估计还是手势识别,MediaPipe都能为你提供高效、实时的解决方案。本文将带你全面了解MediaPipe的功能、架构、应用场景及如何快速上手使用。一、什么是MediaPipe?MediaPipe是GoogleResearch推出的一
- 使用预训练PoseNet模型在安卓应用中进行人体关键点检测
t0_54program
大数据与人工智能android个人开发
在当今的计算机视觉领域,姿态估计是一项关键任务,它旨在检测物体的姿态,也就是物体的方向和位置。其实现原理是通过检测一系列关键点,借此了解物体的主要部分,并估计其当前的方向。基于这些关键点,我们能够以2D或3D形式构建物体的形状。在本篇教程中,我们将利用预训练的PoseNet模型,在安卓应用里检测人体的关键点。一、基础安卓项目为节省时间,我们以TensorFlowLitePoseNet安卓演示项目为
- Unity+MediaPipe虚拟试衣间技术实现全攻略
白木橙花
unity游戏引擎
引言:数字时尚革命的序章在元宇宙概念席卷全球的今天,虚拟试衣技术正成为连接物理世界与数字孪生的关键桥梁。本文将深入解析基于Unity引擎结合MediaPipe姿态估计框架的虚拟试衣系统实现,涵盖从环境搭建到完整AR试穿界面开发的全流程,最终实现支持实时人体追踪、多服装物理模拟及用户反馈的完整解决方案。一、技术选型与架构设计1.1技术栈组合逻辑Unity3D引擎:跨平台渲染核心,提供物理引擎(Phy
- [论文阅读]Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
qian9905
姿态估计论文阅读论文阅读深度学习机器学习
该论文发表于CVPR2021Background背景该论文关注的是的是自底向上的关键点回归人体姿态估计,作者认为回归关键点坐标的特征必须集中注意到关键点周围的区域,才能够精确回归出关键点坐标。因此提出了一种名为解构式关键点回归(DEKR)的方法。这种直接回归坐标的方法超过了以前的关键点热度图检测并组合的方法,并且在COCO和CrowdPose两个数据集上达到了目前自底向上姿态检测的最好结果上图作者
- 基于OpenCV 的人体姿态估计
欣然~
3d
这是一个基于OpenCV的人体姿态估计系统,能够从摄像头视频流中实时检测人体关键点,并通过简化算法重建3D姿态,最后在3D空间中进行仿真展示。系统主要包含2D姿态检测、3D姿态重建和3D仿真三个核心模块。模块导入与环境准备python运行importcv2importnumpyasnpimportosimporttimeimportmatplotlib.pyplotaspltfrommpl_too
- nlf 2025 部署笔记
AI算法网奇
动捕人工智能
目录jit部署测试命令nlf-pipepinenlf-pipeline依赖项:stcnbuf人体分割,没有sam2好framepump库报错:分割算法:stcn.pth相机姿态估计:jit部署测试命令python-c"importtorch;importtorchvision;torch.jit.load('/shared_disk/models/others/nlf/models/nlf_l/n
- 建筑工地安全智能监测:基于多任务姿态估计与场景理解的联合优化方案
燃灯工作室
Ai深度学习pytorch零售神经网络
一、技术原理与数学模型1.1姿态估计基础模型采用OpenPose架构改进方案,定义人体关节点坐标预测公式:P=f(I;θ_p)=[(x_1,y_1,c_1),...,(x_n,y_n,c_n)]其中I为输入图像,θ_p为姿态估计网络参数,c_i为置信度评分1.2场景理解图卷积网络构建场景元素关系图G=(V,E),节点特征更新公式:h_v^{(l+1)}=σ(W^{(l)}h_v^{(l)}+∑_{
- 计算机视觉入门到精通:从理论到实战的全面指南
qsmyhsgcs
计算机视觉人工智能图像处理神经网络深度学习图像分割OpenCV
一、引言计算机视觉旨在让计算机能够“看”懂世界,通过对图像或视频数据的处理和分析,提取出有用的信息。随着深度学习技术的飞速发展,计算机视觉领域取得了突破性进展,许多曾经难以解决的问题如今都得到了有效解决。本文将围绕计算机视觉的核心内容,为读者提供一份全面的学习指南。二、计算机视觉基础概念1.计算机视觉的主要任务计算机视觉的主要任务包括图像分类、目标检测、图像分割、人脸识别、姿态估计和图像增强等。图
- YOLOv8-pose+streamlit 实现人体关键点检测/姿态估计系统
Jumbuck_10
深度学习项目YOLO深度学习关键点检测计算机视觉python健身姿态估计
人体关键点检测系统一、安装与配置1.1安装Streamlit1.2配置文件1.3运行Streamlit应用1.4找模板二、人体关键点检测算法2.1关键点序号2.2YOLOv8-pose图像推理三、将YOLOv8-pose算法内置到streamlit中3.1整体结构3.2常见问题-RGB通道颠倒-Numpy与OpenCV之间的转换四、效果展示五、源码一、安装与配置1.1安装Streamlit在命令行
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- ROS & ROS2 机器人深度相机激光雷达多传感器标定工具箱
强化学习与机器人控制仿真
机器人数码相机人工智能深度学习计算机视觉视觉检测自动驾驶
系列文章目录目录系列文章目录前言三、标定目标3.1使用自定义标定目标四、数据处理4.1相机数据中的标定目标检测4.2激光雷达数据中的标定目标检测输入过滤器:正常估算:区域增长:尺寸过滤器:RANSAC:4.3用于2D-3D姿态估计的透视点算法4.4用于3D-3D配准的GICP4.5误差计算和标定确定性估计五、工作区5.1机器人工作区5.1.1初始化新机器人工作区六、节点、可组合节点和小节点6.1节
- H36M-Toolbox 开源项目教程
章来锬
H36M-Toolbox开源项目教程H36M-Toolbox项目地址:https://gitcode.com/gh_mirrors/h3/H36M-Toolbox项目介绍H36M-Toolbox是一个用于处理和分析Human3.6M数据集的工具箱。Human3.6M是一个大规模的人体姿态估计数据集,包含超过300万张图像和详细的3D姿态标注。H36M-Toolbox提供了一系列工具和脚本,帮助研究
- 基于MediaPipe的智能俯卧撑计数与姿势矫正系统
机器懒得学习
python人工智能深度学习
在现代健身和体能训练中,俯卧撑是最基础也是最有效的自重训练动作之一。然而,许多人在进行俯卧撑训练时常常存在姿势不正确、计数不准确等问题。本文将介绍如何利用计算机视觉和姿态估计技术,开发一个智能的俯卧撑计数与姿势矫正系统。技术背景本系统主要基于以下核心技术:MediaPipePose解决方案:Google开发的实时姿态估计框架OpenCV:计算机视觉处理库NumPy:科学计算库,用于角度计算Pand
- Deepmotion技术浅析(四):人体姿态估计
爱研究的小牛
AIGC—虚拟现实AIGC—视频AIGC—游戏制作人工智能深度学习机器学习AIGC
人体姿态估计是DeepMotion动作捕捉和3D重建流程中的核心模块之一。该模块的主要任务是从输入的视频帧中检测并定位人体关键点(如关节、头部、手脚等)的位置。DeepMotion的人体姿态估计模块不仅支持2D关键点检测,还能够进行3D关键点估计,为后续的动作追踪、3D重建和动画生成提供基础数据。包括:1.2D关键点检测工作原理模型架构详解(OpenPose,HRNet)模型结构公式推导训练过程关
- 点云数据集汇总整理(持续更新......)
点云SLAM
点云数据处理技术点云数据集点云数据模型SLAM点云识别点云分割点云配准深度数据
点云数据集在计算机视觉和深度学习中用于各种任务,包括三维重建、物体识别、语义分割、姿态估计等。整理点云数据集时,可以根据应用场景和数据集的特性进行分类。以下是一些知名和常用的点云数据集的汇总:1.ModelNet系列ModelNet10/ModelNet40:描述:包含3DCAD模型的点云数据集,用于分类任务。ModelNet10包含10类物体,ModelNet40包含40类物体。应用:物体分类、
- 【每日论文】DINeMo: Learning Neural Mesh Models with no 3D Annotations
WHATEVER_LEO
每日论文3d人工智能计算机视觉神经网络深度学习自然语言处理
下载PDF或查看论文,请点击:LlamaFactory-huggingfacedailypaper-每日论文解读|LlamaFactory|LlamaFactory探索LlamaFactory,为你解读AI前沿技术文章,快速掌握最新技术动态https://www.llamafactory.cn/daily-paper/detail/?id=1793摘要层级3D/6D姿态估计是实现全面3D场景理解的
- 3d pose 指标和数据集
AI算法网奇
数据结构与算法3d
目录3D姿态估计、3维重建指标:数据集EHF数据集SMPL-X3D姿态估计、3维重建指标:MVE、PMVE和p-MPJPE都是用于评估3D姿态估计、三维重建等任务中预测结果与真实数据之间误差的指标。MVE(MeanVertexError):是指模型重建过程中每个顶点的预测位置与真实位置之间的平均误差。通常用于评估三维重建的精度。PMVE(Pre-matchedVertexError):这个指标是在
- YOLOv8目标检测算法详解
培根芝士
AIYOLO目标检测
YOLOv8是Ultralytics公司最新推出的Yolo系列目标检测算法,建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性。它是实现目标检测、图像分割、姿态估计等任务的最佳选择之一。YOLOv8是一种基于深度学习的目标检测算法,其核心思想是将目标检测问题转化为一个回归问题,通过一次前向传播过程即可完成目标的位置和类别预测。它继承了YOLO系列算法的优点,如速
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- EDPose:探讨端到端的实时多人姿态估计
烧技湾
AI&ComputerVisionHPE人体姿态估计端到端检测
作者:曾爱玲(港中文博士,现已入职腾讯)单位:IDEA(深圳数字经济研究院)源码:github/ED-Pose该篇论文取得效果如下:这篇文章的优势在于:在复杂的多人场景下能够取得不错的性能提升,虽然在COCO等数据集上的提升不明显。这种端到端的方法,优势在于检测到人体是检测到关键点的一个保证。目录摘要一、介绍二、相关工作2.1.单阶段多人姿态估计2.2检测变压器:三、重新思考单阶段多人姿态估计3.
- 【计算机视觉】手势识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
手势识别是计算机视觉领域中的重要方向,通过对摄像机采集的手部相关的图像序列进行分析处理,进而识别其中的手势,手势被识别后用户就可以通过手势来控制设备或者与设备交互。完整的手势识别一般有手的检测和姿态估计、手部跟踪和手势识别等。一、手掌检测importcv2importmediapipeasmp#初始化MediaPipe手部模型mp_hands=mp.solutions.handshands=mp_
- 【模块】Non-local Neural
dearr__
扒网络模块深度学习pytorchpython
论文《Non-localNeuralNetworks》作用非局部神经网络通过非局部操作捕获长距离依赖,这对于深度神经网络来说至关重要。这些操作允许模型在空间、时间或时空中的任何位置间直接计算相互作用,从而捕获长距离的交互和依赖关系。这种方法对于视频分类、对象检测/分割以及姿态估计等任务表现出了显著的改进。机制非局部操作通过在输入特征图的所有位置上计算响应的加权和来实现,其中权重由位置之间的关系(如
- YOLOv11快速上手:如何在本地使用TorchServe部署目标检测模型
SYC_MORE
YOLOv11系列教程:模型训练优化与部署全攻略TorchServeYOLOv11教程模型部署与推理TorchServe应用目标检测模型训练YOLO模型导出
引言YOLOv11是最新的目标检测模型,以其高效和准确著称,广泛应用于图像分割、姿态估计等任务。本文将详细介绍如何使用YOLOv11训练你的第一个目标检测模型,并通过TorchServe在本地进行部署,实现模型的快速推理。环境准备在开始之前,确保你的开发环境满足以下要求:Python版本:3.8或以上PyTorch:1.9或以上CUDA:如果使用GPU,加速训练和推理TorchServe:用于模型
- 在瑞芯微RK3588平台上使用RKNN部署YOLOv8Pose模型的C++实战指南
机 _ 长
YOLO系列模型有效涨点改进深度学习落地实战YOLOc++开发语言
在人工智能和计算机视觉领域,人体姿态估计是一项极具挑战性的任务,它对于理解人类行为、增强人机交互等方面具有重要意义。YOLOv8Pose作为YOLO系列中的新成员,以其高效和准确性在人体姿态估计任务中脱颖而出。本文将详细介绍如何在瑞芯微RK3588平台上,使用RKNN(RockchipNeuralNetworkToolkit)框架部署YOLOv8Pose模型,并进行C++代码的编译和运行。注本文全
- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>