- 以智能驾驶为例,谈谈在AI时代GIS的发展
匹马夕阳
GIS杂谈人工智能
在智能驾驶领域,AI与GIS的结合正变得尤为重要,尤其是在自动驾驶系统中,GIS不仅仅是用于地图显示,还担负着空间数据分析、路径规划、环境感知等多重任务。随着AI技术的进步,GIS将在智能驾驶中发挥越来越关键的作用。下面我将结合智能驾驶的实际需求,分析AI时代下GIS的发展方向,并给出一些建议。1.高精度地图与实时动态更新发展方向:高精度地图是智能驾驶的核心组成部分之一,自动驾驶系统需要利用这些地
- A Survey on Large Language Model Acceleration based on KV Cache Management
UnknownBody
LLMDailySurveyPaperLLMInference语言模型人工智能自然语言处理
本文是LLM系列文章,针对《ASurveyonLargeLanguageModelAccelerationbasedonKVCacheManagement》的翻译。基于KV缓存管理的大型语言模型加速研究综述摘要1引言2前言3分类4token级优化5模型级优化6系统级优化7文本和多模态数据集8结论摘要大型语言模型(LLM)因其理解上下文和执行逻辑推理的能力,彻底改变了自然语言处理、计算机视觉和多模态
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【Docker】【Nacos】单机部署
又言又语
Dockerdockernacos单机模式
【Docker】【Nacos】单机部署背景介绍环境步骤总结背景因国内访问DockerHub极不稳定,因此总结整理出本文,以便后续需要时方便查看。介绍本文介绍Docker安装Nacos并实现单机模式部署的方法及步骤。环境分类名称版本操作系统WindowsWindows11DockerDockerEngine25.0.3DockerDockerClient25.0.3DockerDockerDeskt
- python3D圣诞树
Chinese Red Guest
pygamepython
importpygameimportmathfrompygame.localsimport*#初始化Pygamepygame.init()#设置屏幕尺寸和标题width,height=800,600screen=pygame.display.set_mode((width,height))pygame.display.set_caption('3D圣诞树')#设置颜色GREEN=(34,139,3
- html5 webgl stl,新闻|Babylon.js|Babylon.js教程|Babylon.js开发|Babylon.js制作|webgl|three.js|html53D可视化开发...
miao君
html5webglstl
4.0.0主要更新添加了对ammo.js的支持,作为物理插件(复合对象,电机,关节)(TrevorDev)Added在ammo.js物理插件中增加了对3D软体,2D布和1D绳索的软体的支持(JohnK)添加了AmmoJSPlugin场景文件加载器(MackeyK24)添加了对WebXR支持(TrevorDev)添加customAnimationFrameRequester以允许会话挂钩到引擎的渲染
- Babylon.js实战3D模拟场景
天涯学馆
WebGL3D图形图像技术javascript3d前端Babylon.jswebgl
目录初始化场景和引擎添加环境和光照创建地面和墙壁添加家具和装饰摄像机和控制交互性渲染循环
- 【SLAM】SLAM技术详解:同步定位与地图构建
steamedobun
计算机视觉SLAM深度学习人工智能目标检测机器学习
引言在机器人技术、自动驾驶、增强现实(AR)和无人机等前沿领域,SLAM(SimultaneousLocalizationandMapping)技术扮演着至关重要的角色。SLAM,即同时定位与地图构建,是一种通过传感器数据实时估计机器人或无人系统自身位置并构建环境地图的技术。本文将详细介绍SLAM技术的原理、应用场景、分类及其优缺点,并对SLAM技术的未来发展进行展望。SLAM技术概述定义与原理S
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- directx12 3d游戏开发 了解函数名和类名规律,提高开发效率
云缘若仙
directx123d算法
类常用:形式为XM+“✳✳✳✳✳✳”XMVECTOR:XM+VECTOR向量类XMMATRIX:XMMATRIX矩阵类前加F:FXMVECTORF+XM+VECTOR前3个XMVECTOR参数前加C:CXMVECTORC+XM+VECTOR其余的XMVECTOR参数其他类定义在:DirectXMath库结构函数常用:形式为XM+“✳✳✳✳✳✳”+“✳✳✳✳✳✳”+“✳✳✳✳✳✳”XMVectorA
- Model Import Settings
UniMark
unityeditormanualunity
前言在可视化3D世界中,模型是3D世界的核心,你可以没有贴图,可以没有特效,甚至可以没有用户交互界面,但必须得有模型来描述世界的基本样貌。在3D世界中,由点线面构成了模型的轮廓;由UV和纹理,共同描述模型的样貌;由骨骼和蒙皮信息描述模型的运动姿态;再由骨骼的运动轨迹描述模型在某个时间段内的肢体动作。MODELPAGEMODEL功能描述ScaleFactor调整导入模型的全局缩放比例。如果模型的比例
- 全面解析:HTML页面的加载全过程(六)--浏览器渲染之分层 - Layer
huazi99于老师
html前端
分层原因在生成布局树之后,渲染进程会将一些复杂的3D动画、滚动条、高z-index的元素生成图层,并生成图层树交给GPU加速渲染。页面设计复杂,并且交互效果多。如不分层,用户的一个简单交互将导致整个页面的重新渲染,效率低下。分层好处通过分层,浏览器可以将复杂的页面元素分离成不同的图层,每个图层可以独立地进行渲染和更新,从而减少重排和重绘的次数。例如,当用户滚动页面时,只有可视区域的内容会被重新绘
- CVPR‘24开源 | ADA-Track:端到端3D多目标跟踪最新SOTA!
计算机视觉工坊
3D视觉从入门到精通3d目标跟踪人工智能
编辑:计算机视觉工坊添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3DGS系列、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
- 所有指标全面领先!图像-点云配准最新SOTA!CoFiI2P详细介绍!
3D视觉工坊
3D视觉从入门到精通SLAM自动驾驶3D视觉
作者:大森林|来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:3D点云,拉你入群。文末附行业细分群。1.笔者总结本文介绍了CoFiI2P,这是一种新颖的图像到点云(I2P)配准网络。传统的I2P配准方法通常在点到像素级别估计对应关系,但忽略了全局关系,这往往导致陷入局部最优解。为了解决这个问题,CoFiI2P采用分层的方式提取对
- unity3d tilemap
hewei+
unity3d
2019的unity3d需要进入packageManager添加tilemap。不然找不到tilepalette瓦片碰撞器compositecollider2d是将多个碰撞器融合提高性能的。自动添加的刚体改成static,勾选tilemapcollider2d的usedBycomposite不添加碰撞器的瓦片设置为none;图片有间隙。改为能被图片像素除断的值,也不能太小
- OpenCV中的图像处理函数详解
Luzem0319
opencv图像处理人工智能
在OpenCV中,图像处理函数是实现图像处理和计算机视觉任务的基础。下面将详细介绍六个重要的图像处理函数:二值化函数、自适应二值化函数、腐蚀函数、膨胀函数、仿射变换函数和透视变换函数。一、二值化函数功能二值化函数(cv2.threshold())用于将灰度图像转换为二值图像。二值图像中,每个像素只有两种可能的值(通常是0和255),分别代表黑色和白色。参数src:输入图像,应为灰度图像。thres
- OpenCV中的边缘检测和轮廓处理
Luzem0319
opencv人工智能计算机视觉
在图像处理和计算机视觉任务中,边缘检测和轮廓处理是非常重要的步骤。OpenCV库提供了多种函数来实现这些功能,包括Sobel算子、Laplacian算子、Canny算子、findContours函数、drawContours函数以及透视变换函数等。本文将详细介绍这些函数的功能、参数、返回值和应用。1.Sobel算子函数功能:Sobel算子用于计算图像灰度的近似梯度,梯度越大越有可能是边缘。参数:s
- ModelNet40-C 项目使用教程
薛烈珑Una
ModelNet40-C项目使用教程ModelNet40-CRepofor"BenchmarkingRobustnessof3DPointCloudRecognitionagainstCommonCorruptions"https://arxiv.org/abs/2201.12296项目地址:https://gitcode.com/gh_mirrors/mo/ModelNet40-C1.项目介绍M
- 设计项目实例26-基于物联网的智能开关电源(BUCK电路、电压电流监测、阿里云、DHT11、继电器)
凡人电子工作室
物联网阿里云嵌入式硬件stm32
设计项目实例26-基于物联网的智能开关电源(BUCK电路、电压电流监测、阿里云、DHT11、继电器)前提说明需知项目设计要求项目提供资料main.c代码测试视频项目3D图前提说明电子开发合作请私信联系,商业/非商业项目均可洽谈,价格友好,负责可靠。目前已开发项目三百余单,不限时售后,直到项目完结。需知对此项目有需求请私信联系我,备注对应项目名称号(非免费,伸手党勿扰,价格公道,售后负责)所有项目均
- Python学习——numpy
ToToBe
python学习numpy
参考资料:numpy官网一、基础NumPy的主要对象是同构多维数组。它是一个元素表(通常是数字),所有类型都相同,由非负整数元组索引。在NumPy维度中称为axes.例如,3D空间中的点的坐标[1,2,1]具有一个轴。该轴有3个元素,所以我们说它的长度为3.在下图所示的例子中,数组有2个轴。第一轴的长度为2,第二轴的长度为3。[[1.,0.,0.],[0.,1.,2.]]NumPy的数组类被叫做n
- 【云原生网关】Higress 从部署到使用详解
小码农叔叔
网关与限流术linux与容器实战docker搭建HigressHigress搭建docker部署HigressHigress使用详解Higress使用docker搭建higress
目录二、网关概述2.1什么是云原生网关2.2常见的云原生网关2.2.1Nginx2.2.2ApiSix2.2.3Kong2.2.4ApacheShenyu2.2.5Higress2.2.6Envoy三、higress介绍3.1什么是higress3.2Higress定位3.3Higress内核选择四、Higress搭建过程4.1higress常用部署模式4.2环境准备4.3docker部署higr
- 计算机视觉:解锁未来智能的钥匙及其代码实践
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁未来智能的钥匙及其代码实践在当今这个数据爆炸的时代,计算机视觉作为人工智能的一个重要分支,正以前所未有的速度推动着科技的边界。它不仅让机器“看懂”世界,更在自动驾驶、医疗影像分析、智能制造、安防监控等众多领域展现出巨大的应用潜力。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实践中应用这些技术,旨在为读者提供一个理论与实践相结合的全面视角。一、计
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- 【Python练手】logging日志修改,显示成毫秒级时间戳 -> 1628822017676
青禾tester
Python基础学习-入门
一、初始配置和日志显示1、配置format=%(asctime)s.%(msecs)03d%(name)s%(relativeCreated)d%(levelname)s%(module)s%(funcName)s%(message)sdatefmt=%Y/%m/%d%H:%M:%S2、打印日志2021/08/1220:56:59.708root13280INFOloginclick_mine_t
- 对称加密和非对称加密算法分类,国密算法分类。
铁锤2号
各种小问题小技巧
对称加密算法对称加密算法加密和解密使用的是同一个密钥。常用的对称加密算法包括:DES、3DES、AES、RC4、RC5、RC6。非对称加密算法指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。常见的非对称加密算法:RSA、DSA(数字签名用)、ECC(移动设备用)、Diffie-Hellman散列
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 软件开发中的密码学(国密算法)
自己的九又四分之三站台
#软件架构师的“不归之路“密码学算法
1.软件行业中的加解密在软件行业中,加解密技术广泛应用于数据保护、通信安全、身份验证等多个领域。加密(Encryption)是将明文数据转换为密文的过程,而解密(Decryption)则是将密文恢复为明文的过程。以下是加解密在软件行业中一些常见的应用和技术:1.1.对称加密与非对称加密对称加密:加密和解密使用相同的密钥。常见算法包括AES(高级加密标准)、DES(数据加密标准)、3DES(Trip
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C