【GiantPandaCV导语】知识蒸馏将教师网络中的知识迁移到学生网络,而NAS中天然的存在大量的网络,使用KD有助于提升超网整体性能。两者结合出现了许多工作,本文收集了部分代表性工作,并进行总结。
知识蒸馏可以看做教师网络通过提供soft label的方式将知识传递到学生网络中,可以被视为一种更高级的label smooth方法。soft label与hard label相比具有以下优点:
那么知识蒸馏在网络结构搜索中有什么作用呢?总结如下:
知识蒸馏在很多工作中作为训练技巧来使用,比如OFA中使用渐进收缩训练策略,使用最大的网络指导小网络的学习,采用inplace distillation进行蒸馏。BigNAS中则使用三明治法则,让最大的网络指导剩下网络的蒸馏。
目标:解决教师网络和学生网络的匹配问题(知识蒸馏中教师网络和学生网络匹配的情况下效果更好)。
在知识蒸馏中,选择不同的教师网络、不同的学生网络的情况下,最终学生网络的性能千差万别。如果学生网络和教师网络的容量相差过多,会导致学生难以学习的情况。Cream这篇文章就是为了解决两者匹配问题。
普通的SPOS方法如左图所示,通过采样单路径子网络进行训练。右图则是结合了知识蒸馏的方法,Cream提出了两个模块:
Cream中心思想是,子网络可以在整个训练过程中协作学习并相互教导,目的是提高单个模型的收敛性。
消融实验如下:
目标:通过教师引导各个block特征层的学习,根据loss大小评判各子网的性能。
这是一篇将NAS和KD融合的非常深的一个工作,被CVPR20接收。之前写过一篇文章进行讲解,这里简单回顾一下。
DNA是两阶段的one-shot NAS方法,因此其引入蒸馏也是为了取代普通的acc指标,提出了使用子网络与教师网络接近程度作为衡量子网性能的指标。
在训练的过程中,进行了分块蒸馏,学生网络某一层的输入来自教师网络上一层的输出,并强制学生网络这一层的输出与教师网络输出一致(使用MSELoss)。在搜索过程结束后,通过计算各子网络与教师网络的接近程度来衡量子网络。
目标:通过改进KL divergence防止学生over estimate或者under estimate教师网络。
上图展示了OFA,BigNAS等搜索算法中常用到的蒸馏方法,子网使用的是KL divergence进行衡量,文中分析了KL 散度存在的局限性:即避零性以及零强制性。如下公式所示,p是教师的逻辑层输出,q是学生逻辑层输出。
K L ( p ∥ q ) = E p [ log ( p / q ) ] \mathrm{KL}(p \| q)=\mathbb{E}_{p}[\log (p / q)] KL(p∥q)=Ep[log(p/q)]
AlphaNet提出了一个新的散度衡量损失函数,防止出现过估计或者低估的问题。如下所示,引入了 α \alpha α。
D α ( p ∥ q ) = 1 α ( α − 1 ) ∑ i = 1 m q i [ ( p i q i ) α − 1 ] D_{\alpha}(p \| q)=\frac{1}{\alpha(\alpha-1)} \sum_{i=1}^{m} q_{i}\left[\left(\frac{p_{i}}{q_{i}}\right)^{\alpha}-1\right] Dα(p∥q)=α(α−1)1i=1∑mqi[(qipi)α−1]
其中 α \alpha α不为0或者1,这样如下图所示:
蓝色线对应example 2表示,当 α \alpha α为负值,如果q过估计了p中的不确定性, D α ( p ∣ ∣ q ) D_\alpha(p||q) Dα(p∣∣q)的值会变大。
紫色线对应example 1表示,当$\alpha
为 正 数 , 如 果 q 低 估 了 p 中 的 不 确 定 性 , 为正数,如果q低估了p中的不确定性, 为正数,如果q低估了p中的不确定性,D_\alpha(p||q)$的值会变大
同时考虑两种情况,取两者中最大值作为散度:
D α + , α − ( p ∥ q ) = max { D α − ( p ∥ q ) ⏟ penalizing over-estimation , D α + ( p ∥ q ) ⏟ penalizing under-estimation } D_{\alpha_{+}, \alpha_{-}}(p \| q)=\max \{\underbrace{D_{\alpha_{-}}(p \| q)}_{\begin{array}{c} \text { penalizing } \\ \text { over-estimation } \end{array}}, \underbrace{D_{\alpha_{+}}(p \| q)}_{\begin{array}{c} \text { penalizing } \\ \text { under-estimation } \end{array}}\} Dα+,α−(p∥q)=max{ penalizing over-estimation Dα−(p∥q), penalizing under-estimation Dα+(p∥q)}
目标:提出了衡量学生网络和教师网络内部激活相似度 衡量指标,通过表征匹配可以用来加速网络结构搜索。
这部分其实是属于知识蒸馏分类中基于关系的知识,构建的知识由不同样本之间的互作用构成。
具体的指标构成如上图所示,是一个bsxbs大小的矩阵,这个在文中被称为Representational Dissmilarity Matrix,其功能是构建了激活层内部的表征,可以通过评估RDM的相似度通过计算上三角矩阵的关系系数,比如皮尔逊系数。
该文章实际上也是构建了一个指标P+TG来衡量子网的性能,挑选出最优子网络。
如上图所示,RDM的计算是通过衡量教师网络的feature以及学生网络的feature的相似度,并选择选取其中最高的RDM相似度。通过构建了一组指标,随着epoch的进行,排序一致性很快就可以提高。
目标:固定教师网络,搜索最合适的学生网络。
对于相同的教师网络来说,不同的架构的学生网络,即便具有相同的flops或者参数,其泛化能力也有所区别。在这个工作中选择固定教师网络,通过网络搜索的方法找到最优的学生网络,使用L1 Norm优化基础上,选择出与教师网络KL散度差距最小的学生网络。
min w , g 1 N ∑ i = 1 N K L ( f s ( x i , w , g ) , f t ( x i ) ) + λ 1 ∥ w ∥ 2 + λ 2 ∑ j = 1 M α j ∥ g j ∥ 1 \min _{\mathbf{w}, \mathbf{g}} \frac{1}{N} \sum_{i=1}^{N} K L\left(f_{s}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{w}, \mathbf{g}\right), f_{t}\left(\mathbf{x}_{\mathbf{i}}\right)\right)+\lambda_{1}\|\mathbf{w}\|_{2}+\lambda_{2} \sum_{j=1}^{M} \alpha_{j}\left\|g_{j}\right\|_{1} w,gminN1i=1∑NKL(fs(xi,w,g),ft(xi))+λ1∥w∥2+λ2j=1∑Mαj∥gj∥1
目标:在给定教师网络情况下,搜索最合适的学生网络。
神经网络中的知识不仅蕴含于参数,还受到网络结构影响。KD普遍方法是将教师网络知识提炼到学生网络中,本文提出了一种架构感知的知识蒸馏方法Architecture-Aware KD (AKD),能够找到最合适提炼给特定教师模型的学生网络。
Motivation: 先做了一组实验,发现不同的教师网络会倾向于不同的学生网络,因此在NAS中,使用不同的教师网络会导致模型倾向于选择不同的网络结构。
AKD做法是选择使用强化学习的方法指导搜索过程, 使用的是ENAS那种通过RNN采样的方法。
目标:从集成的教师网络中学习,并使用NAS调整学生网络模型的容量。NAS+KD+集成。
这篇文章之前也进行了讲解,是网络结构搜索,知识蒸馏,模型集成的大杂烩。
详见: https://blog.csdn.net/DD_PP_JJ/article/details/121268840
这篇文章比较有意思,使用上一步中得到的多个子网络进行集成,可以得到教师网络,然后使用知识蒸馏的方法来引导新的子网络的学习。关注重点在于:
AdaNAS受Born Again Network(BAN)启发, 提出Adaptive Knowledge Distillation(AKD)的方法以辅助子网络的训练。
集成模型选择 :
从左到右代表四次迭代,每个迭代中从搜索空间中选择三个模型。绿色线框出的模型代表每个迭代中最优的模型,AdaNAS选择将每个迭代中最优subnet作为集成的对象。
最终集成的时候还添加了额外的weight参数w1-w4:
最终输出逻辑层如下所示:(这个w权重也会被训练,此时各个集成网络的权重是固定的,只优化w)
f i = ∑ k = 1 i w k ⋅ h k f_{i}=\sum_{k=1}^{i} w_{k} \cdot h_{k} fi=k=1∑iwk⋅hk
Knowledge Distillation
目标:解决知识蒸馏的效率和有效性,通过使用特征聚合来引导教师网络与学生网络的学习,网络结构搜索则是体现在特征聚合的过程,使用了类似darts的方法进行自适应调整放缩系数。ECCV20
文章总结了几种蒸馏范式:
最后一种是本文提出的方法,普通的特征蒸馏都是每个block的最后feature map进行互相蒸馏,本文认为可以让教师网络的整个block都引导学生网络。
具体如何将教师网络整个block中所有feature map进行聚合,本文使用的是darts的方法进行动态聚合信息。(a) 图展示的是对group i进行的可微分搜索过程。(b)表示从教师到学生的路径loss构建,使用的是CE loss。©表示从学生到教师网络的路径loss构建,使用的是L2 Loss。其中connector实际上是一个1x1 卷积层。
(ps: connector让人想到VID这个工作)