- vit细粒度图像分类(七)TBNet学习笔记
无妄无望
学习笔记人工智能深度学习分类
1.摘要细粒度鸟类图像识别致力于实现鸟类图像的准确分类,是机器人视觉跟踪中的一项基础性工作。鉴于濒危鸟类的监测和保护对保护濒危鸟类具有重要意义,需要采用自动化方法来促进鸟类的监测。在这项工作中,我们提出了一种新的基于机器人视觉跟踪的鸟类监视方法,该方法采用了一种名为TBNet的亲和关系感知模型,该模型结合了CNN和Transformer架构,并具有新颖的特征选择(FS)模块。具体来说,CNN是用来
- YOLOv8+DeepSORT多目标车辆跟踪(车辆检测+跟踪+车辆计数)(内附免费资源+部署讲解)
-嘟囔着拯救世界-
YOLOv8YOLOpython人工智能yolov8深度学习pytorch
目录一、前言二、开发环境(前提条件)三、环境搭建教程3.1、创建虚拟环境3.2、选择虚拟环境并安装所需要的包3.3、运行代码步骤3.3.1、克隆git储存库3.3.2、转到克隆库的文件夹下3.3.3、安装依赖项3.3.4、转到检测目录下3.3.5、用于yolov8物体检测+跟踪+车辆计数四、效果图一、前言欢迎阅读本篇博客!今天我们深入探索YOLOv8+deepsort视觉跟踪算法。结合YOLOv8
- 七轴开源协作机械臂myArm视觉跟踪技术!
大象机器人
人工智能机器人python机械臂ROS
引言ArUco标记是一种基于二维码的标记,可以被用于高效的场景识别和位置跟踪。这些标记的简单性和高效性使其成为机器视觉领域的理想选择,特别是在需要实时和高精度跟踪的场景中。结合机器学习和先进的图像处理技术,使用ArUco标记的机械臂系统可以实现更高级的自动化功能,如精确定位、导航和复杂动作的执行。本案例旨在展示结合ArUco标记和机械臂运动控制技术,实现对机械臂的高精度控制和姿态跟踪。通过分析和解
- 传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
代码的路
原文链接论文地址:https://arxiv.org/pdf/1501.04587.pdf摘要阻碍CNN应用于视觉跟踪的主要障碍是缺乏适当标记的训练数据。虽然释放CNN功率的现有应用程序通常需要大量数百万的训练数据,但是视觉跟踪应用程序通常在每个视频的第一帧中仅具有一个标记的示例。我们通过离线预培训CNN,然后将学到的丰富特征层次结构转移到在线跟踪来解决此研究问题。CNN还在在线跟踪期间进行微调,
- 【论文阅读】SPARK:针对视觉跟踪的空间感知在线增量攻击
prinTao
论文阅读spark大数据
SPARK:Spatial-AwareOnlineIncrementalAttackAgainstVisualTrackingintroduction在本文中,我们确定了视觉跟踪对抗性攻击的一个新任务:在线生成难以察觉的扰动,误导跟踪器沿着不正确的(无目标攻击,UA)或指定的轨迹(有针对性的攻击,TA)。为此,我们首先采用现有的攻击方法,即FGSM、BIM和C&W,提出了一种空间感知的基本攻击,并
- ResNet:视觉跟踪中的应用
lgdhang
SiamFC跟踪方法取得了很大的成功,同时也促进了深度学习在跟踪领域的发展。我们知道SiamFC采用的骨干网络是AlexNet,使用该网络来提取图像特征。AlexNet最早实在图像识别任务中被提出,第一次证实了卷积网络在CV领域的有效性,取得了2012年ImageNet竞赛的第一名。自此以后,许多的深度卷积网络被提出,如VGG,GoogLeNet以及ResNet等,可以看出从AlexNet到Res
- mininum_snap笔记
Xuan-ZY
路径规划算法-ros数学建模学习笔记
概念value正比正比位置速度加速度角度(旋转)jerk角速度推力(移动平缓,易于视觉跟踪)snap角加速度推力导数(节约能源)凸优化算法convexoptimization凸优化(ConvexOptimization)是数学和计算机科学领域的一个重要分支,主要研究如何有效地解决凸优化问题。凸优化问题的主要目标是找到一个函数的最小值,其中函数是凸函数,同时满足一定的约束条件,这些约束条件也必须是凸
- 【IR】什么是对抗攻击 | 视觉跟踪
ca1m4n
CV攻防目标跟踪安全
现在有机会接触一下针对深度学习神经网络的对抗攻击,并做整理如下对于CV攻防,其实去年12月组会听完就浏览过相关文章面向目标检测的对抗样本综述+后门防御,NIPS2022adversarialattackfortrackingCVPR2021|IoUAttack导读方法结果相关工作CVPR2020|CSA摘要方法结果CVPR2021|IoUAttackIoUAttack:TowardsTempora
- AI项目八:yolo5+Deepsort实现目标检测与跟踪(CPU版)
殷忆枫
AI计算机视觉人工智能目标检测计算机视觉
若该文为原创文章,转载请注明原文出处。一、DeepSORT简介DeepSORT是一种计算机视觉跟踪算法,用于在为每个对象分配ID的同时跟踪对象。DeepSORT是SORT(简单在线实时跟踪)算法的扩展。DeepSORT将深度学习引入到SORT算法中,通过添加外观描述符来减少身份切换,从而提高跟踪效率。这是提供两个demo,一是跟踪计数人员;二是车辆计数跟踪;二、环境搭建本人没有GPU的电脑,所以修
- 用于视觉跟踪的在线特征选择研究(Matlab代码实现)
程序猿鑫
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述视觉跟踪是计算机视觉中的重要任务之一,它涉及在视频序列中准确地跟踪目标物体。在线特征选择是一种针对视觉跟踪的方法,通过动态地选择和更新跟踪目标的特征,以提高跟踪性能和鲁棒性。以下是一些可能的研究方向和方法:1.特征
- SeqTrack: Sequence to Sequence Learning for Visual Object Tracking
Sky_codes
论文阅读人工智能深度学习transformerVIT目标跟踪
摘要在本文中,我们提出了一种新的序列到序列学习框架的视觉跟踪,称为SeqTrack。它将视觉跟踪转换为一个序列生成问题,它以自回归的方式预测对象边界盒。这与之前的Siamese跟踪器和transformer跟踪器不同,它们依赖于设计复杂的磁头网络,如分类和回归头。SeqTrack只采用了一个简单的编解码器变压器架构。编码器使用bidirectionaltransformer提取视觉特征,而解码器使
- 基于CW32的K210二维舵机视觉跟踪物体
蓝色无际
pythonc语言
前言最近想要做一个项目是涉及用国产MCU--CW32配合K210控制舵机实现跟踪物体的目的,我想要实现一个功能就是识别到目标并且把目标的坐标信息通过串口传输给单片机,单片机控制舵机进行控制,那么视觉方面目前我认为最好的选择就是使用k210了,它不仅成本低,性能好,而且基于MicroPython的开发极易上手,单片机选用的是武汉芯源半导体公司的国产芯片CW32.什么是CW32CW32是武汉芯源半导体
- 用于视觉跟踪的在线特征选择研究(Matlab代码实现)
数学建模与科研
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述视觉跟踪是计算机视觉中的重要任务之一,它涉及在视频序列中准确地跟踪目标物体。在线特征选择是一种针对视觉跟踪的方法,通过动态地选择和更新跟踪目标的特征,以提高跟踪性能和鲁棒性。以下是一些可能的研究方向和方法:1.特征
- ICCV2013 录用论文(目标跟踪相关部分)
简单生活FF
计算机视觉ICCVvisualtrackingComputerVisionVisualTrackingICCV2013
ICCV13,所有论文下载地址,请猛戳目前(截止9月11日晚)官网上只有录用论文的ID,但是在KyrosKutulakos主页上放出了所有收录论文的title和作者。现在只待各作者主页上放出draft了。以下将列出视觉跟踪方面的收录的几篇论文(以下大多只列出第一作者,这种字体的是Oral):单目标(表观模型):1.SeunghoonHong,BohyungHan.OrderlessTracking
- 基于对抗式深度学习和往复式深度学习的视觉目标跟踪
Donations
valse2019多目标跟踪深度学习在线
valse2019会议的workshop9《在线视觉跟踪》中上海交通大学的马超老师分享的题目是《基于对抗式深度学习和往复式深度学习的视觉目标跟踪》,本次分享主要是基于《VITAL:VisualTrackingviaAdversarialLearning》和《DeepAttentiveTrackingViaReciprocativeLearning》这两篇分别发表在CVPR2018和NIPS2018
- SwinTrack: A Simple and Strong Baseline for Transformer Tracking(NIPS2022)
写进メ诗的结尾。
单目标跟踪transformer深度学习人工智能目标跟踪计算机视觉
SwinTrack摘要介绍相关工作方法实验摘要近期,Transformer在视觉跟踪方面进行了深入探索,并展示了显著的潜力。然而,现有的基于Transformer的跟踪器主要将Transformer用于融合和增强由卷积神经网络提取的特征,Transformer在表征学习中的潜力仍未被发掘。在本文中,提出了一个建立在经典孪生框架基础之上的简单而高效的基于全注意力的Transformer跟踪器(Swi
- SiamGAT:Graph Attention Tracking
小左先生
目标跟踪孪生网络计算机视觉python人工智能深度学习
Abstract基于孪生网络的跟踪器将视觉跟踪任务描述为相似度匹配问题。几乎所有流行的孪生跟踪器都是通过目标分支和搜索分支之间的卷积特征互相关来实现相似学习的。然而,由于需要预先确定目标特征区域的大小,这些基于互相关的方法要么保留了大量的不利背景信息,要么丢失了大量的前景信息。此外,目标与搜索区域之间的全局匹配也在很大程度上忽略了目标的结构和部分信息。为了解决该问题,本文提出了一种简单的目标感知S
- SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking
小左先生
SiamCAR孪生网络目标跟踪深度学习pytorch机器学习神经网络
本译文为了方便自我阅读,有能力请阅读原版:https://arxiv.org/abs/1911.07241摘要通过将视觉跟踪任务分解为两个子问题,分别是像素类别的分类和该像素处对象边界框的回归,提出了一种新的全卷积孪生网络,以逐像素的方式解决端到端的视觉跟踪问题。该框架由两个简单的子网组成:一个用于特征提取的孪生子网和一个用于边界框预测的分类回归子网。SiamCAR采用在线训练和离线跟踪的策略,在
- OpenCV实战(16)——角点检测详解
盼小辉丶
opencv计算机视觉人工智能
OpenCV实战(16)——角点检测详解0.前言1.Harris特征检测器1.1检测Harris角点1.2cv::cornerHarris函数参数2.可追踪的良好特征3.特征检测器的通用接口4.完整代码小结系列链接0.前言在计算机视觉中,兴趣点(interestpoints)也称为关键点(keypoints)或特征点(featurepoints),广泛用于解决对象识别、图像匹配、视觉跟踪、3D重建
- Deep Learning for Visual Tracking: AComprehensive Survey基于深度学习的视觉跟踪
嗯呢嗯呢
深度学习pythonpytorch深度学习
论文地址:https://arxiv.org/pdf/1912.00535.pdf摘要研究当前基于深度学习的可视化跟踪方法、基准数据集和评价指标。从9个关键方面总结了基于深度学习方法的基本特征、主要动机和贡献:网络架构、网络开发、视觉跟踪的网络训练、网络目标、网络输出、相关滤波器开发、鸟瞰跟踪、长期跟踪、在线跟踪。引言视觉跟踪:由目标初始状态估计未知的视觉目标的轨迹。应用自动驾驶汽车[1],自主机
- 连通区域
算法小妖
1概要连通区域(ConnectedComponent)一般是指图像中具有相同像素值且位置相邻的前景像素点组成的图像区域,连通区域分析是指将图像中的各个连通区域找出并标记。连通区域分析是一种在CV和图像分析处理的众多应用领域中较为常用和基本的方法。例如:OCR识别中字符分割提取(车牌识别、文本识别、字幕识别等)、视觉跟踪中的运动前景目标分割与提取(行人入侵检测、遗留物体检测、基于视觉的车辆检测与跟踪
- OpenCV实战(10)——积分图像详解
盼小辉丶
opencv计算机视觉图像处理
OpenCV实战(10)——积分图像详解0.前言1.积分图像计算2.自适应阈值2.1固定阈值的缺陷2.2使用自适应阈值2.3其它自适应阈值计算方法2.4完整代码3.使用直方图进行视觉跟踪3.1查找目标对象3.2完整代码小结系列链接0.前言我们知道直方图是通过遍历图像的所有像素并累积每个强度值在该图像中出现的频率来计算的。有时,我们只对计算图像某些区域的直方图感兴趣,在许多计算机视觉算法中,累积图像
- 目标跟踪总结
zbxzc
计算机视觉跟踪
最简单的目标跟踪(模版匹配)matchTemplateVisualTracking领域最新paper与codeTLDTracking-Learning-Detection原理分析TLD(Tracking-Learning-Detection)学习与源码理解之(一)TLD算法TLD视觉跟踪技术解析再谈PN学习庖丁解牛TLD比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍1算法概述2runt
- 【论文阅读】Online Decision Based Visual Tracking via Reinforcement Learning
叶柖
论文笔记论文阅读计算机视觉人工智能强化学习
OnlineDecisionBasedVisualTrackingviaReinforcementLearning概述本文2020年发布于NeurIPS(CCF-A)。视觉跟踪通常基于目标检测或者模板区配,但它们都只适用于特定的场景或对象。因为它们遵循不同的跟踪原则,直接将它们融合在一起是不明智的。本文主要提出了一种新的视觉跟踪集成框架DTNet,它基于层次强化学习(HRL)的决策机制。该框架提供
- 【开源】Transformer 在CV领域全面开花:新出跟踪、分割、配准等总结
我爱计算机视觉
计算机视觉机器学习人工智能深度学习大数据
本文收录5月以来值得关注的Transformer相关开源论文,包括基于Transformer的自监督学习方法在CV任务中应用、视觉跟踪、视频预测、语义分割、图像配准,以及1篇针对Transformer风格的网络中,“attentionlayer”是否是必要的技术报告。01Self-SupervisedLearningwithSwinTransformers来自清华&西安交通大学&微软亚洲研究提出以
- Deep Reinforcement Learning for Visual Object Tracking in Videos学习笔记
WaitPX
强化学习目标跟踪深度学习计算机视觉
DeepReinforcementLearningforVisualObjectTrackinginVideos学习笔记1.主要贡献(1)我们提出并开发了一种新的用于视觉跟踪的卷积循环神经网络模型。该方法直接利用深度学习模型的能力自动学习空间和时间约束。(2)我们的框架是使用深度RL算法进行端到端训练的,在这种算法中,模型经过优化,以在长期内最大限度地提高跟踪性能。(3)我们的模型是完全离线训练的
- 《Siam R-CNN: Visual Tracking by Re-Detection》------文献翻译
听我的错不了
目标跟踪文献翻译
SiamR-CNN:VisualTrackingbyRe-Detection(SiamR-CNN:通过重新检测进行视觉跟踪)解读:https://www.bilibili.com/read/cv4690157https://blog.csdn.net/qq_33012833/article/details/105802190?ops_request_misc=&request_id=&biz_id
- Siam R-CNN: 通过重检测进行视觉跟踪
AiCharm
#目标检测篇深度学习人工智能计算机视觉目标检测
SiamR-CNN:通过重检测进行视觉跟踪SiamR-CNN:VisualTrackingbyRe-DetectionContributionsMethodSiamRCNNVideoHardExampleMiningTrackletDynamicProgrammingAlgorithm实验总结更多Ai资讯:公主号AiCharmSiamR-CNN:VisualTrackingbyRe-Detecti
- Opencv学习之角点检测
~晓广~
opencvc++opencv
Opencv学习之角点检测角点检测在图像处理和计算机视觉领域,兴趣点(interestpoints),也被称作关键点(keypoints)、特征点(feturepoints)。它被大量用于解决物体识别、图像识别、图像匹配、视觉跟踪、三维重建等一系列的问题,如果能检测到足够多特殊的点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就具有使用价值。图像特征类型被分为以下三种:(1)边缘
- 商汤科技 & 中科院自动化所:视觉跟踪之端到端的光流相关滤波 | CVPR 2018
PaperWeekly
作者丨朱政学校丨中科院自动化所博士生单位丨商汤科技研究方向丨视觉目标跟踪及其在机器人中的应用本文主要介绍我们发表于CVPR2018上的一篇文章:一种端到端的光流相关滤波跟踪算法。据我们所知,这是第一篇把Flow提取和tracking任务统一在一个网络里面的工作。■论文|End-to-endFlowCorrelationTrackingwithSpatial-temporalAttention■链接
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分