- (Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
North_D
人工智能基础知识点人工智能深度学习学习自然语言处理迁移学习python神经网络
文章目录阿里云人工智能工程师ACP认证考试知识点辅助阅读(AliyunAIACP04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述I.深度学习算法1️⃣前馈神经网络(FFNs)详解2️⃣卷积神经网络(CNNs)探秘II.增强学习探索3️⃣增强学习基础与决策过程4️⃣常见增强学习算法剖析III.迁移学习实践5️⃣迁移学习基本原理与应用阿里云人工智能工程师ACP认证考试知识点辅
- AI大模型探秘:核心能力与应用场景深度解析
程序员辣条
人工智能javaAI大模型大模型spring
AI大模型是什么通过概念考察的方式,拆开来了解AI大模型。AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。大模型:把LM比作人的大脑。大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。分类语言大模型:Ch
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- 深入浅出之Convolutional Block Attention Module(YOLO)
浩瀚之水_csdn
#Pytorch框架YOLO目标检测专栏深度学习目标检测深度学习神经网络计算机视觉
ConvolutionalBlockAttentionModule(CBAM)是一种用于增强卷积神经网络(CNN)特征表示能力的注意力机制模块。以下是对CBAM的详细解释:一、CBAM的基本结构CBAM由两个子模块组成:通道注意力模块(ChannelAttentionModule,CAM)和空间注意力模块(SpatialAttentionModule,SAM)。这两个模块可以串联使用,以增强CNN
- DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索
kaichu2
论文翻译DeepSeek
DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索在人工智能领域,大型语言模型(LLMs)的发展日新月异,其在自然语言处理和生成任务中的表现逐渐接近人类水平。然而,如何进一步提升这些模型的推理能力,使其能够更好地处理复杂的逻辑、数学和科学问题,一直是研究的热点。最近,DeepSeek-AI团队发布的DeepSeek-R1模型为这一领域带来了新的突破。本文将详细介绍DeepSeek-
- 大模型的底层逻辑及Transformer架构
搏博
transformer架构深度学习机器学习人工智能
一、大模型的底层逻辑1.数据驱动大模型依赖海量的数据进行训练,数据的质量和数量直接影响模型的性能。通过大量的数据,模型能够学习到丰富的模式和规律,从而更好地处理各种任务。2.深度学习架构大模型基于深度学习技术,通常采用多层神经网络进行特征学习与抽象。其中,Transformer架构是目前主流的大模型架构,它通过自注意力机制和前馈神经网络来处理输入数据。这种架构能够高效地处理序列数据,如文本。3.自
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍
GoAI
深入浅出LLM深入浅出AI大模型书生人工智能LLMllama
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·浦语大模
- RK3568、RK3588、RK3358性能对比
给生活加糖!
嵌入式开发知识linux开发板
RK3568、RK3588和RK3358是由Rockchip(瑞芯微电子)推出的不同系列的处理器,广泛应用于嵌入式系统、物联网设备、智能家居、安防设备等领域。以下是它们的性能介绍及差异性对比:1.RK3568CPU:四核ARMCortex-A55架构,主频高达2.0GHz。GPU:Mali-G522EE,支持OpenGLES3.2、Vulkan1.1。NPU:内置0.8TOPs的神经网络处理单元,
- AI模型调度架构全解析:实现任务与模型的智能匹配
大模型玩家
人工智能架构学习方法产品经理经验分享算法ai
在人工智能技术高速发展的今天,AI大模型的应用范围不断拓宽。从自然语言处理到技术研发、从教育场景到企业服务,AI大模型正在逐步改变我们的工作和生活。然而,随着需求的多样化和任务复杂性的增加,如何高效地调用和管理多个AI大模型,成为了企业和开发者面临的一大挑战。本文将深入剖析基于Ollama的AI大模型问答调度架构,探讨其核心设计、功能亮点,以及在业务场景中的应用优势,帮助您全面了解这一系统如何在复
- 长上下文大模型会让检索增强生成(RAG)过时吗?
人工智能
长上下文大模型会让检索增强生成(RAG)过时吗?大模型(LLM)的迅速发展对人工智能领域,尤其是自然语言处理(NLP)产生了重大影响。传统上,像检索增强生成(RAG)这样的技术通过允许模型动态访问外部知识源,在提升大语言模型能力方面发挥了重要作用。然而,长上下文大语言模型(能够处理多达100万个令牌的上下文窗口的模型)的出现,引发了一个有趣的问题:长上下文大语言模型会让检索增强生成(RAG)过时吗
- MATLAB机器学习、深度学习
Yolo566Q
机器学习matlabmatlab机器学习深度学习
目录第一章MATLAB图像处理基础第二章BP神经网络及其在图像处理中的应用第三章卷积神经网络及其在图像处理中的应第四章迁移学习算法及其在图像处理中的应用第五章生成式对抗网络(GAN)及其在图像处理中的应用第六章目标检测YOLO模型及其在图像处理中的应用第七章讨论与答疑近年来,随着无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是在计算机
- PyTorch深度学习实战(2)——PyTorch快速入门
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
PyTorch的简洁设计使得它易于入门,在深入介绍PyTorch之前,本文先介绍一些PyTorch的基础知识,以便读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。1TensorTensor是PyTorch中最重要的数据结构,它可以是一个数(标量)、一维数组(向量)、二维数组(如矩阵、黑白图片等)或者更高维的数组(如彩色图片、视频等)。Tensor与NumPy
- 基于深度学习的文本情感分析
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于深度学习的文本情感分析关键词:深度学习、文本情感分析、自然语言处理、卷积神经网络、循环神经网络、BERT、情感分类、情绪识别1.背景介绍文本情感分析(TextSentimentAnalysis),又称情感计算(SentimentComputing),是自然语言处理(NLP)领域的重要研究方向之一。它旨在从文本数据中识别和理解作者表达的情感倾向,例如正面、负面或中立。随着互联网和社交媒体的蓬勃发
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- 因果推断与机器学习—因果表征学习与泛化能力
樱花的浪漫
因果推断机器学习学习人工智能深度学习自然语言处理计算机视觉
近十年来,深度学习在多个领域取得了巨大成功,包括机器视觉、自然语言处理、语音识别和生物信息等。这些成功为机器学习技术的进一步发展和应用奠定了基础。表征学习是深度学习的核心技术之一。在机器学习问题中,其主要目的是从观测到的低级变量中提取信息,进而学习到能够准确预测目标变量的高级变量。这种从低层次到高层次变量的学习过程,有助于模型更好地理解数据和进行预测。以德国马克斯-普朗克研究所的BernhardS
- 基于Ernie-Bot打造语音对话功能
人工智能
GPT-4的语音对话功能前段时间在网上火了一把,许多人被其强大的自然语言处理能力和流畅的语音交互所吸引。现在,让我们来看看如何使用类似的技术,即基于百度的ERNIE-Bot,来打造自己的语音对话功能。ERNIE-Bot是一种先进的语言理解模型,可以处理复杂的语言任务,包括语音到文本的转换和自然语言理解。视频演示:涉及技术:langchainMemory、ChainErnie-bot百度智能云语音识
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- 用 Python 微调 DeepSeek R1
程序员
用Python微调DeepSeekR1阅读时长:15分钟发布时间:2025-02-05近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】微调前的准备工作在正式开始微调大语言模型之前,我们先来了解一下技术前提条件和设置要求。Python库和框架微调大语言模型需要用到以下Python库和框架:
- PyTorch中的 torch.nn.GRU
彬彬侠
自然语言处理GRUPyTorchPythonNLP自然语言处理
PyTorch中的torch.nn.GRUGRU(GatedRecurrentUnit)是循环神经网络(RNN)的一种变种,常用于处理序列数据。与传统的RNN相比,GRU引入了门控机制,旨在解决长序列训练中的梯度消失问题,并提高了训练效率和性能。在PyTorch中,torch.nn.GRU是一个非常方便的模块,用于构建和训练GRU网络。1.torch.nn.GRU的定义GRU是torch.nn中的
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- DeepSeek-R1 低成本训练的根本原因是?
明哲AI
AIGC人工智能大模型deepseekAIAgent
在人工智能领域,大语言模型(LLM)正以前所未有的速度发展,驱动着自然语言处理、内容生成、智能客服等众多应用的革新。然而,高性能的背后往往是高昂的训练成本,动辄数百万美元的投入让许多企业和研究机构望而却步。近期,国产大模型DeepSeek-R1的横空出世,以其卓越的性能和极具竞争力的成本,打破了这一固有认知。它在MATH基准测试中,以77.5%的准确率媲美OpenAIo1模型,但训练成本却仅为其三
- 关于大模型 AGI 应知应会_生在AI发展的时代
森焱森
机器人人工智能算法总结科技
在AI时代,大模型和通用人工智能(AGI)正在深刻改变我们的生活和工作方式。以下是一些关于大模型和AGI的关键知识点,帮助我们更好地理解这一技术浪潮。一、大模型的核心概念与特点(一)什么是大模型大模型(LargeLanguageModels,LLMs)是指具有大规模参数和复杂计算结构的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据来学习复杂的模式和特
- 【知识图谱增强】大模型应用架构:融合智能与数据的新纪元!
大模型入门教程
知识图谱架构人工智能语言模型大模型llamaAI大模型
1.引言最近OpenAI连续12天进行12场直播,发布新品。其中第八天介绍了ChatGPT搜索功能项全体用户开放。搜索增强大模型值得OpenAI安排一天专门介绍,和o1、ChatGPTVision等功能同等待遇,说明其意义重大。ChatGPT的外部搜索能力,使其不仅限于预训练的数据,而是可以实时访问和检索互联网的最新信息。这就是典型的知识增强大模型应用,通过外部知识的增强能够扩展大模型的能力,让其
- 大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)
North_D
大语言模型LLM分布式tensorflow人工智能自然语言处理深度学习python神经网络
文章目录大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)1.引言2.TensorFlow分布式训练基础概念3.TensorFlow中LLM分布式训练的关键技术及应用4.利用TensorFlow进行LLM分布式训练的具体实践5.高级主题与最新进展探究大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)1.引言随着自然语言处理(NLP)的迅速
- 知识图谱检索增强的GraphRAG(基于Neo4j代码实现)
大模型扬叔
知识图谱neo4j人工智能GraphRAG
前言图检索增强生成(GraphRAG)正逐渐流行起来,成为传统向量搜索方法的有力补充。这种方法利用图数据库的结构化特性,将数据以节点和关系的形式组织起来,从而增强检索信息的深度和上下文关联性。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性。而向量数据库在处理这类结构化信息时则显得力不从心,它们更擅长通过高维向量处理非结构化数据。在RAG应用中,结合
- DeepSeek-R1全面超越OpenAI o1:开源大模型训练范式革新
前端javascript
CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读人工智能在过去十年中的发展令人惊叹。其中,2017年Google发布的“AttentionIsAllYouNeed”论文奠定了神经网络架构的重要基础,推动了大规模语言模型(LLM)的突破。OpenAI早期专注于强化学习(RL),但在Transformer结构问世后,迅速调整方向,借助Google的开源研究开发出强大的LLM。然而,尽
- python 量化回测框架生成器
2401_85969422
大数据
各位朋友们,小编在这里要分享,量化回归测试平台设计python量化交易策略回测,一起体验不同地域的风土人情,拓宽视野!虽然#python#的安装非常简单,但是总有一些神经网络CSDN真的非常白,雪白雪白的……以至于我常看见这种帖子:所以,我还是写一个安装指南吧,专供给神经网络CSDN学习PHP从入门到精通:我的个人时间线。首先要知道,安装Python其实就是安装一个Python编程环境,而且这和安
- 【2024年国内一些知名的免费AI对话工具的对比】
龙少9543
后端人工智能
2024年国内一些知名的免费AI对话工具的对比免费体验以下是2024年国内一些知名的免费AI对话工具的对比以及它们的体验地址。这些工具基于各自公司的深度学习和自然语言处理技术,为用户提供智能对话服务。百度文心一言特点:基于ERNIE模型,拥有知识增强、检索增强和对话增强的技术特色,支持跨模态生成。体验地址:https://yiyan.baidu.com/讯飞星火认知大模型特点:支持多风格长文本生成
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s