首先我们应该明确实验的步骤:
1.准备数据
数据集读入,打乱,生成训练集和测试集,配对
2.搭建网络
定义神经网络中可训练参数
3.参数优化
嵌套循环迭代,with结构更新参数,显示loss损失
4.acc/loss可视化
首先是准备数据:(已经在代码后面做了标注,有些比较重要的也会在文本图片下做标注)
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data#表示特征,比如花萼宽度,花蕊长度这样共4个特征
y_data = datasets.load_iris().target#代表鸢尾花的种类,比如狗尾鸢尾这样,共3种花
打乱数据:
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
括号里116的意思是鸢尾花数据集iris有116组数据,是自带的数据
seed的作用是随机种子,shuffle的作用是洗牌,即打乱顺序
最后一行tf.random的意思是设置全局种子,如果不设置的话每次运行结果会不一样
接下来将数据集分成训练集和测试集:
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]#从第一行到倒数第30行
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
x_train就是80行4列的矩阵,y_train就是80行1列的矩阵,y_train记录的是鸢尾花的类型,x_train的4种特征只会对应1种鸢尾花,比如这4个特征只会是弗吉尼亚鸢尾的,不会是狗尾鸢尾。
转换数据类型,配对数据:
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
在这里将每32行的数据打包为一个batch,这里的打包方法是x_train和y_train打包在一起的,在喂给神经网络时,以batch为单位喂入,当然也可以将batch设置为别的数字
定义神经网络的参数:
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
w1是一个4*3的矩阵,b1是一个1*3的矩阵,w1的列数要与b1的数一样才行,比如这里都是3,后面的stddev表示标准差,seed生成随机种子
嵌套循环迭代:
# 训练部分
for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
#这里的loss计算的是每一个batch的loss
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
#将每个batch的loss累加起来
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
#loss_all是四个batch的总和,模型每训练一轮的loss值应该是4个batch的平均值
#将loss_all/4存入链表,这个链表将存储每一轮的loss值,在后续将以训练轮数为横坐标,loss值为纵坐标画出loss曲线图
#loss曲线图可以直观地展现模型训练的变化
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
在训练集完成后就可以进行验证的测试集了:
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test_01, y_test_01 in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test_01, w1) + b1
y = tf.nn.softmax(y)
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test_01.dtype)
# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
#为什么pred和y_test_01能比较,是因为鸢尾花数据集中也是用0,1,2来表示是什么鸢尾种类的
correct = tf.cast(tf.equal(pred, y_test_01), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct += int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test_01.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
在这里需要注意的是此时的x_test_01,y_test_01并不是一开始的x_test和y_test,就是因为怕混淆所以这里做了区分。由于test_db一共30行,而32行才为一个batch,所以他们的结果才巧合地一样。
使用plot函数绘制loss和acc曲线:
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()