http://acm.jlu.edu.cn/joj/showproblem.php?pid=1016
按照六度空间理论,你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。这就是六度空间理论,也叫小世界理论。
这道题就是告诉你每一个人他认识的人,然后给出两个人之间的间隔,这个间隔就是至少通过几个人认识另一个人。
这个题显然是一个图论的题目,就是求两顶点之间的最短距离,但是比较不易处理的是:这个题开始没有列出所有的顶点,而是直接给出边的信息,这对构造邻接矩阵需要一些处理.
构造完邻接矩阵直接使用floyd算法就可以了。
#include<iostream>
#include<string>
#include<vector>
#include<map>
using namespace std;
const int MAX_DEG = 100000;
struct LineInfo{
string person;
int connect_num;
vector<string> connect_persons;
};
void floyd( vector< vector<int> > & distances ){
int i, j, k;
int n = distances.size();
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
for(k = 0; k < n; k++){
int t_dis = distances[i][k] + distances[k][j];
if(distances[i][j] > t_dis)
distances[i][j] = t_dis;
}
}
int main(){
int n,n_query;
cin >> n;
int i,j;
map<string,int> person_to_index;
vector< vector<int> > matrix;
vector<LineInfo> lines;
for(i = 0; i < n; i++){
LineInfo line;
cin >> line.person >> line.connect_num;
for(j = 0; j < line.connect_num; j++){
string connect_person;
cin >> connect_person;
line.connect_persons.push_back(connect_person);
}
lines.push_back(line);
person_to_index[line.person] = i;
vector<int> v;
for(j = 0; j < n; j++){
v.push_back(MAX_DEG);
}
matrix.push_back(v);
}
for(i = 0; i < n; i++){
LineInfo line = lines[i];
string one = line.person;
int num = line.connect_num;
for(int i = 0; i < num; i++){
int idex,jdex;
idex = person_to_index[one];
jdex = person_to_index[line.connect_persons[i]];
matrix[idex][jdex] = 1;
}
}
floyd(matrix);
cin >> n_query;
for(i = 0; i < n_query; i++){
string p1,p2;
cin >> p1 >> p2;
int p1_index = person_to_index[p1];
int p2_index = person_to_index[p2];
if(matrix[p1_index][p2_index] == MAX_DEG){
cout << p1 << " has no connection to " << p2 << "." << endl;
}else{
cout << p1 << " is separated from " << p2 << " by "
<< matrix[p1_index][p2_index] - 1 << " degrees." << endl;
}
}
return 0;
}
我比较懒,由于这个题构造邻矩阵比较容易,由于数据量不是很大,所以开始使用BFS,时间应该没问题,但是老是WA,不知道什么原因:
#include<iostream>
#include<string>
#include<map>
#include<queue>
using namespace std;
map< string,vector<string> > mp;
map< string, bool > visited;
void BFS(string tp1,string tp2){
queue<string> qu;
qu.push(tp1);
int distance = 0;
while(!qu.empty()){
string p = qu.front();
qu.pop();
vector<string> v = mp[p];
int i = 0;
for(; i < v.size(); i++){
if( tp2 == v[i] ){
cout << tp1 << " is separated from " << tp2
<< " by " << distance << " degrees." << endl;
return;
}
if( visited.count(v[i]) == 0 ) {
qu.push(v[i]);
visited[v[i]] = true;
}
}
distance++;
}
cout << tp1 << " has no connection to " << tp2 << "." << endl;
}
int main(){
int n,ncase;
string onePerson, knownTheOther;
int nknown;
cin >> n;
for(int i = 0; i < n; i++){
cin >> onePerson;
vector<string> v;
mp[onePerson] = v;
cin >> nknown;
for(int i = 0; i < nknown; i++){
cin >> knownTheOther;
mp[onePerson].push_back(knownTheOther);
}
}
cin >> ncase;
string tp1,tp2;
for(int i = 0; i < ncase; i++){
cin >> tp1 >> tp2;
visited.clear();
BFS(tp1,tp2);
}
}