数据分析学习Day9---统计学(描述统计)

  数据的度量

平均数是一种数据位置的度量,平均数容易受到极值的影响,因为数据集并不能保证「干净」,各类运营数据经常受到扰动,比如薅羊毛党就会拉高营销活动的平均值。一般而言,可以用调整平均数(trimmed mean)消除异常波动,在数据集中删除一定比例的极大值和极小值,比如5%,然后重新计算平均数。

它既然不靠谱,我们便请出中位数。将所有数据按升序排列后,位于中间的数值即中位数。当数据集是奇数,中位数是中间的数值,当数据集是偶数,中位数是中间两个数的平均值。这也是小学的内容。

另外一种度量是众数,它是数据集出现频次最多的数据,当有多个众数时,称为多众数。众数使用的频率低于前两者,更多用于分类数据。

数据分析师常将数据划分为四个部分,每一部分包含25%的数据集,划分的分割点叫做四分位数。

依次将数据升序排列,位于第25%位置的叫做第一四分位数Q1,位于第50%位置的叫做第二四分位数Q2,即中位数,位于第75%的叫做第三分位数Q3。这三个点,能辅助衡量数据的分布状态。

  数据的离散和变异

方差是一种可以衡量数据「稳定性」的度量,更通俗的解释是衡量数据的变异性,从图形上说,也叫离散程度。

方差的计算公式是各个数据分别与其平均数之差的平方和的平均数。

上述公式是总体数据集的方差计算,当数据近为部分抽样样本时,n应该改为n-1。数据集足够大时,两者的误差也可以忽略不计。

现在计算上文商品的方差。Excel中的方差公式为VARP( ),如果是样本数据,则为VAR( )。不同Excel版本,函数会有微小差异。

切比雪夫定理指出,至少有75%的数据值与平均数的距离在2个标准差以内,至少有89%的数据与平均数在3个标准差之内,至少有94%的数据与平均数在4个标准差以内。这是一个非常方便的定理,能快速掌握数据包含的范围。

你可能感兴趣的:(数据分析学习Day9---统计学(描述统计))