- python logistic regression_机器学习算法与Python实践之逻辑回归(Logistic Regression)
weixin_39702649
pythonlogisticregression
机器学习算法与Python实践这个系列主要是参考下载地址:https://bbs.pinggu.org/thread-2256090-1-1.html一、逻辑回归(LogisticRegression)Logisticregression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把
- 2023-07-28
2023梦启支教团张耀文
感悟数学之美,分享数独之乐——中国矿业大学梦启支教团开展趣味数独课程7月27日下午3时,中国矿业大学梦启支教团在贵州省金沙县第九小学(金沙县彩虹小学)开展“兴趣爱好培养班”系列课程,本次课程讲述趣味数独。该课程旨在让学生们教会孩子们数独的技巧方法,引导学生喜欢数独、爱上数独。课程由梦启支教团成员于子文主讲,梦启三班全员参加。课程伊始,于子文老师首先介绍欧拉研究的拉丁方阵,向学生们讲述数独的起源,激
- 数学之美(43)——由勾股定理与相似进入玄幻的图形转换世界
刷牙喝凉白开
今天,我们直接进入正题,如果给一个三角形,怎么作出与它面积相等的正方形?有的小伙伴就很吃惊,这还不简单吗?求出三角形的面积S△,再求得S△的算术平方根,不就是正方形的边长了吗?可问题是:如果三角形的性质是任意的,三边长度未知,无法通过测量的方法来求得面积,而且作图只能用尺规呢?其实,这类问题我们借助勾股定理及相似里的射影定理就可以圆满解决。基础概念.1勾股定理直角三角形斜边的平方等于两直角边的平方
- 万物皆数
学生的陪伴者
爱因斯坦说过,宇宙最不可理解之处,就是它居然是可以被理解的。本书将告诉你,那些看似不可理解的万物背后,隐藏着一把开启理解之门的钥匙。这把钥匙,就是数学!本书将引领我们穿越回史前时代、四大文明古国、欧洲中世纪与文艺复兴时期,也会带领我们漫步于巴黎卢浮宫与发现宫。作者巧妙地运用历史学的方法,构建了无数历史或现今的场景,将数学从亭台楼阁之上带入我们的日常生活,将数学之美化为一篇篇优美的文字,娓娓道来。阅
- 书单
boo_
已完成:2020年5月《微服务设计》(5.2)《redis开发与运维》(5.4)2019年《我们台湾这些年》《GoWeb编程》(12.14)《Go高级编程》(1.4)《Go语言实战》《MySQL入门很简单》《MySQL必知必会》《编码:隐匿在计算机软硬件背后的语言》《程序员修炼之道-从小工到专家》《树莓派开始,玩转Linux》《数学之美》·吴军《浪潮之巅》·吴军阅读中《Go程序设计语言》(2.3.
- 马云云栖大会演讲
猎豹最快
有很多东西想讲,但是被数学家们这么一搞(前几分钟,数学家门登台展示数学之美),我心里发虚,就不一定讲得下去。昨天晚上和数学家们进行了交流。我非常后悔没有进入数学世界,当然也很幸运没进入那个世界,因为我进去很有可能被赶出来。毫无疑问,没有数学为基础,科学就可能没有基础,没有科学就没有这些技术。默默无闻在背后为人类社会作出巨大贡献的人才是真正的英雄。云栖大会已经第九届,应该是第十年的第九届。参加人数是
- 打起精神去天马行空吧~!~
零月浅浅
自从决定参加注册电气工程师的考试,浅浅终于迈上文理艺兼修的终极道路,这时候为了给自己洗脑“数学之美”、“科学之美”和多元思维,我特意买来《达芬奇传》《穷查理宝典》和《爱因斯坦传》书房镇宅,还放言如果明年能过就买一本《几何原本》作为客厅镇宅之宝,毕竟洗脑其实就是通过反复循环来构建神经回路,晚洗不如早洗,别人洗不如自己洗,应付考试洗不如赋予伟大意义洗,对吧~!在这个过程中有几点心得体会,我觉得可以跟朋
- 1.25商学院-工具书籍
城市格调刘姣
对我印象深刻的是第三本《数学之美》,前几天我在研究数据做表格,什么公式、求和、函数等等的都是关于数学方面的,现在才觉得原来上学时语数外都是到长大了到了一定层次才能用到的东西,小时候没学好的,现在又要补课了。
- 工具书籍
w小郭
本课中着重讲到了数学之美。都说上帝本就是程序员,这说明世间万事万物都有其自己的既有规律,而程序使用的基本工具就是数学。平时在管理过程中,任何举措无不是建立在数学知识之上的。所有重大决策都是以数据分析作为依据,所有机制均是以数据作为平台支持的。管理中如果没有数据,就不是更改的抉择。如果一个管理机制不是建立在数据基础上的,只凭借感性而为,则很难持久或精确。
- 分享|熵增定律:让无数迷途者顿悟的终极定律
西西弗斯推石头_一念及春
如果物理学只能留一条定律,我会留熵增定律。说这句话的人叫吴国盛,清华大学的科学史系主任。另外一位吴姓牛人,毕业于清华大学及约翰霍普金斯大学,写了《浪潮之巅》《数学之美》等十多本畅销书的跨界达人吴军,也说过类似的话,他说如果地球毁灭了,我们怎么能够在一张名片上写下地球文明的全部精髓,让其它文明知道我们曾有过这个文明呢?吴博士给出的答案是三个公式:1+1=2(代表了数学文明)E=mc²(爱因斯坦的质能
- 数学之美,无与伦比
過期作廢
Day144廢銅爛鐵听《万物皆数》:这是一本让不爱数学的人爱上数学,让热爱数学的人更加热爱的好书。图片发自App学生时代,最大的爱好就是做数学证明题,运用一系列的定理、公式和公理,经过N步的解题过程,最终终于完成证明,是一件多么美妙的事。欧几里得、莱布尼茨,耳熟能详;美丽而又精致的几何图形,二次函数的抛物线……真的无与伦比。所以,后来选择岗位时,毫不犹豫地定了数学。虽然我感性,但并不妨碍我对有着极
- 《数学之美》--第一章:文字和语言 vs 数字和信息
mantch
PDF下载第一章文字和语言vs数字和信息数字、文字和自然语言一样,都是信息的载体,它们之间原本有着天然的联系。语言和数学的产生都是为了同一个目的—记录和传播信息。但是,直到半个多世纪前香农博士提出信息论,人们才开始把数学和信息系统自觉地联系起来。信息:自然语言就是信息的一种,其实从最初的动物世界,再到以人类为主导的世界,都是在传播消息,哪怕是发出怪叫声也是一样的。这跟现在的信息传播模型是一样的。i
- 体验数学之美:绘制曲线
howard2005
与Python共舞红尘圆锥曲线心形线雅可比曲线阿基米德螺线
文章目录一、实战概述二、实战步骤(一)圆锥曲线1、绘制圆2、绘制椭圆3、绘制双曲线4、绘制抛物线(二)心形线(三)雅各布线一、实战概述通过Python编程,我们可以借助matplotlib与numpy库绘制一系列迷人的数学曲线,展现数学之美。例如,利用极坐标绘制椭圆(圆锥曲线的一种),心形线以简单优雅的方程勾勒浪漫形态;洛必达曲线则体现迭代生成的分形魅力;阿基米德螺线以其恒定增长的角度展现出螺旋之
- 这张书单,给你打下商业世界的地基
胡滔的自留地
今天,刘润老师在“刘润”公号里列出了一张提高商业认知的书单。1.《创新者的窘境》作者:克莱顿·克里斯坦森2.《激荡30年》作者:吴晓波3.《德鲁克管理思想精要》作者:彼得·德鲁克4.《管理的常识》作者:陈春花5.《系统之美》作者:德内拉·梅多斯6.《绝对价值》作者:伊塔马尔·西蒙森和艾曼纽·罗森7.《战略几何学》作者:罗伯特·凯德尔8.《数学之美》作者:吴军9.《顾客为什么购买》作者:昂德希尔10
- 《见识》书评
风过无痕8
吴军是知名自然语言处理和搜索专家,硅谷风险投资人,他的著作《数学之美》荣获国家图书馆第八届文津图书奖、第五届中华优秀出版物奖,《文明之光》被评为2014年“中国好书”,《浪潮之巅》荣获“蓝狮子2011年十大极佳商业图书”奖,《智能时代》开启了2016智能时代元年。他曾经担任谷歌资深研究员,设计了谷歌中、日、韩文搜索算法以及谷歌的自然语言分析器。自2008年他开始从事风险投资,并于2014年作为创始
- 数学之美(13)——从坚“整”不渝到伽利略的困惑
刷牙喝凉白开
庞加莱曾经说过:能够做出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和什么美感的人。在数的海洋里,总有些规律令人沉迷。坚“整”不渝雅克布·伯努利是瑞士著名的数学家,他的主要发现有对数螺线。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在数学家的假想中。也许正是这神奇的形状,让苏格兰博物学家和数学
- 数学之美一两处
快乐的阿常艾念宝
数学之美机器学习数学之美机器学习信息指纹加法交换律
引言吴军博士的《数学之美》科普性地介绍了自然语言处理、搜索引擎、语音识别、智能导航等人工智能应用,一些看似很智能、高大上的应用,其背后的数学原理往往却并不复杂,体现了数学之美!如果数学能够这样教,可能很多人也不会头疼于数学了从这点启发我们,在解决问题时,通常需要考虑问题背后的数学原理、模型、理论是什么,然后,依照道的指导进行实践。不然,就仅是在术的层面进行努力,以及修修补补,而不能获得像算法一样广
- NP系列问题详解
前行的七哥
时间复杂度什么是NP问题?这个是我之前比较纠结的一个问题,一直没有搞清楚它的来龙去脉。直到看了《数学之美》附录中的介绍才清楚。要清楚地了解这个问题,得从怎么衡量计算量这个问题开始。现在基本每个学习计算机相关学科的同学都知道,衡量一个算法的计算量是用时间复杂度。现在看起来理所当然的事情,在计算机科学发展初期却是个大问题,因为没有衡量算法的标准,不同算法无法比较优劣。自从有了时间复杂度后,算法优劣可以
- 探索数据的奥秘:一份深入浅出的数据分析入门指南
uncle_ll
数据库数据分析数据挖掘入门
数据分析书籍推荐入门读物深入浅出数据分析啤酒与尿布数据之美数学之美数据分析ScipyandNumpyPythonforDataAnalysisBadDataHandbook集体智慧编程MachineLearninginAction机器学习实战BuildingMachineLearningSystemswithPython数据挖掘导论MachineLearningforHackers专业读物Intr
- 如何用谷歌OKR制定可实现的年度目标
格局林状元
凡事预则立,不预则废。2018年初,我看了吴军老师的《见识》,提到了谷歌的计划制定方法OKR,于是我就模仿做了个Execl,昨天想起了看了下,重要的目标竟然完成了90%,当然有些目标完成度为0。于是今年我继续使用OKR做目标计划。罗胖曾经提过吴军老师一年能完成很多重要的事情,出过《数学之美》《大学之路》等多本畅销书,而且还是硅谷和国内两家风险投资机构的顾问,保持每周运动10小时,保持每年高质量的学
- 妈妈智慧引领,孩子图说数学飞起来!
图说数学王欣向
妈妈智慧引领,孩子图说数学飞起来!图片发自App智慧妈妈们智慧引领二年级的宝贝们学图说,拓思维!我们的专属vip班随时支援,助力宝贝们快速发现数学之美!图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App四年级的哥哥学习图说数学不到一个月,进步巨大,一年级的妹妹也受影响,跟随哥哥步伐!这作业让我佩服!图片发自App图片发自App图片发自A
- 数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
- 学课之美
姚羿臣
今天我就来说一下各门学科的美。语文之美在语文课上袁老师课上生动有趣,老师还在课堂上,让我们提核心问题、然我们学到了很多知识,畅游在语文和老师的知识中。在课外,我们通过小组活动来学习语文,又体验到了不一样的感觉。数学之美能够在张老师的数学课上,老师教会我准确的运用数学符号,并且可以去喜欢上、热爱上它,那你就能领略到数学带给你的美。我认为数学给我带来的美是每一个数字和每一个符号的组成。英语之美英语老师
- 数学之美(5)——兔子数列(斐波那契数列)
刷牙喝凉白开
兔子问题斐波那契数列指的是这样一个数列0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368……这个数列从第3项开始,每一项都等于前两项之和。一、斐波那契包络线如图,首先画出一个大圆,等分36份,并编号1,2,3,…36.将第1个点与第2个、3个、5个、8个、13个、2
- scratch3.0数学之美-初识scratch3.0
爱编程的小熊
1.scratch界面介绍Scratch是麻省理工学院的"终身幼儿园团队"开发的图形化编程工具,主要面对青少年开放。孩子不用记住命令不代表不需要知道命令。积木模块包括10个大类,100多个功能。包括了构成一个完整程序的每个环节,甚至数组和函数。Scratch3.0Scratch3.0相比Scratch2.0有很多改进,界面也有了较大的变化。那问题来了,原来的Scratch2.0还可以用吗,答案是可
- 分享《见识》
我和我的二三四
《见识》由吴军所写。吴军还写有《数学之美》、《浪潮之巅》两本书。这两本书,光书名就吸引我去阅读。用眼所见,成心之识。以下是整理摘录原书的主要内容。一如何培养选择的能力因为容易把精力都浪费在小事上,导致投入在值得关注的大事上的精力反而受到了限制。方法1要有辨别西瓜的能力,分清西瓜和芝麻2要避免芝麻的干扰,减少自己的选项“你的时间在哪,你的成就就在哪”二有见识的人如何改变自己的命运1不妄想一步登天实现
- sigmoid softmax优化
鲤鱼不懂
tensorrt深度学习
1.前言最近在搞模型部署发现,推理速度不能满足我们需求,于是最近学习了优化算子技巧,学到了sigmoid,softmax算子优化,真的数学之美。2.sigmoid算子优化一.算子优化图我们根据sigmoid公式,我们进行求反函数,于是有了上面的等式变化,我们只需要把模型输出的值,直接与阈值比较就可以,比如阈值0.5得分我们可以通过上面等式,换算成模型输出的值,这样模型输出的值,就可以直接比较了,大
- 五一宅家书单-人民日报推荐的30本书
瑞秋在写作
人民日报力荐提升自己必读的30本书,这个假期让自己变得与众不同!1、《平凡的世界》——路遥高度浓缩了中国西北农村的历史变迁过程2、《三体》——刘慈欣“中国科幻文学里程碑”式的作品3、《万历十五年》——黄仁宇原来历史可以如此的有趣、丰富4、《围城》——钱钟书“围在城里的人想逃出来,城外的人想冲进去”5、《数学之美》——吴军把高深的数学原理用通俗易懂的语言讲述出来6、《繁花》——金宇澄“中国科幻文学里
- js数学之美-几何六面翻转 笔记
wudimingwo
这节课,牛逼在六面体的运动,变化,用的都是css3的,关键是class类名用得非常6配合之前学的公式导出鼠标位置判断,就能做出来效果了几何体翻转.wrapper{width:400px;height:400px;perspective:300px;border:1pxsolidblack;}.item{width:100px;height:100px;transform-style:preserv
- 【数学趣味】这些数你知道吗?
海韵互联
数学中有许多新奇、巧妙而又神秘的东西吸引着人们,这是数学的趣味、魅力所在。伽利略曾说过:“数学是上帝用来书写宇宙的文字。”远在古代人们就对“数”产生了某种神秘感,毕达哥拉斯甚至说:数统治着世界。数的许多颇具神奇、令人叹赏的性质,往往使人们感慨不已。1.神奇的等式图1~图5展示了数学之美!图1图2图3图4图52.神奇的分数小数点后面是01,02,…09,10,11,…20,21,…小数点后面两位两位
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam