Window Join
基于窗口的Join是将具有相同key并位于同一个窗口中的事件进行联结。
用法:
stream.join(otherStream)
.where()
.equalTo()
.window()
.apply()
官方案例:
Tumbling Window Join的实现,关于其他的窗口,如滑动窗口、会话窗口等,原理是一致的。
如图所示,我们定义了一个大小为2毫秒的滚动窗口,该窗口的形式为[0,1], [2,3], ...。该图显示了每个窗口中所有元素的成对组合,这些元素将传递给JoinFunction。注意,在翻转窗口中[6,7]什么也不发射,因为在绿色流中不存在要与橙色元素⑥和joined连接的元素。
Inner Join
与SQL中的Inner Join语义是一致的,将具有相同key并在同一个窗口中的事件Join,注意是key能完全匹配上才能Join上。
Flink API中的stream.join(otherStream)正是实现的Inner Join。
以电商中的订单双流Join为例,定义两个输入流和一个Join后的输出流
// 两个订单流,测试双流Join
case class OrderLogEvent1(orderId:Long,amount:Double,timeStamp:Long)
case class OrderLogEvent2(orderId:Long,itemId:Long,timeStamp:Long)
case class OrderResultEvent(orderId:Long,amount:Double,itemId:Long)
为了测试方便,直接读取两个集合中的数据,定义流事件
val leftOrderStream = env.fromCollection(List(
OrderLogEvent1(1L, 22.1, DateUtils.getTime("2020-04-29 13:01")),
OrderLogEvent1(2L, 22.2, DateUtils.getTime("2020-04-29 13:03")),
OrderLogEvent1(4L, 22.3, DateUtils.getTime("2020-04-29 13:04")),
OrderLogEvent1(4L, 22.4, DateUtils.getTime("2020-04-29 13:05")),
OrderLogEvent1(5L, 22.5, DateUtils.getTime("2020-04-29 13:07")),
OrderLogEvent1(6L, 22.6, DateUtils.getTime("2020-04-29 13:09"))
))
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[OrderLogEvent1](Time.seconds(5)) {
override def extractTimestamp(element: OrderLogEvent1): Long = element.timeStamp
})
.keyBy(_.orderId)
val rightOrderStream = env.fromCollection(List(
OrderLogEvent2(1L, 121, DateUtils.getTime("2020-04-29 13:01")),
OrderLogEvent2(2L, 122, DateUtils.getTime("2020-04-29 13:03")),
OrderLogEvent2(3L, 123, DateUtils.getTime("2020-04-29 13:04")),
OrderLogEvent2(4L, 124, DateUtils.getTime("2020-04-29 13:05")),
OrderLogEvent2(5L, 125, DateUtils.getTime("2020-04-29 13:07")),
OrderLogEvent2(7L, 126, DateUtils.getTime("2020-04-29 13:09"))
))
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[OrderLogEvent2](Time.seconds(5)) {
override def extractTimestamp(element: OrderLogEvent2): Long = element.timeStamp
})
.keyBy(_.orderId)
Join实现:
leftOrderStream
.join(rightOrderStream)
.where(_.orderId)
.equalTo(_.orderId)
.window(TumblingEventTimeWindows.of(Time.minutes(5))) // 5min的时间滚动窗口
.apply(new InnerWindowJoinFunction)
.print()
class InnerWindowJoinFunction extends JoinFunction[OrderLogEvent1, OrderLogEvent2, OrderResultEvent] {
override def join(first: OrderLogEvent1, second: OrderLogEvent2): OrderResultEvent = {
OrderResultEvent(first.orderId, first.amount, second.itemId)
}
}
测试输出结果:
OrderResultEvent(1,22.1,121)
OrderResultEvent(2,22.2,122)
OrderResultEvent(5,22.5,125)
OrderResultEvent(4,22.4,124)
可见实现了基于Window的Inner Join。
除了官方提供的API,也可以通过coGroup来实现
coGroup:
该操作是将两个数据流/集合按照key进行group,然后将相同key的数据进行处理,但是它和join操作稍有区别,它在一个流/数据集中没有找到与另一个匹配的数据还是会输出。
coGroup的用法类似于Join,不同的是在apply中传入的是一个CoGroupFunction,而不是JoinFunction
val coGroupedStream = leftOrderStream
.coGroup(rightOrderStream)
.where(_.orderId)
.equalTo(_.orderId)
.window(TumblingEventTimeWindows.of(Time.minutes(5))) // 5min的时间滚动窗口
Inner Join实现
coGroupedStream.apply(new InnerWindowJoinFunction).print()
class InnerWindowJoinFunction extends CoGroupFunction[OrderLogEvent1,OrderLogEvent2,OrderResultEvent]{
override def coGroup(first: java.lang.Iterable[OrderLogEvent1],
second: java.lang.Iterable[OrderLogEvent2],
out: Collector[OrderResultEvent]): Unit = {
/**
* 将Java的Iterable对象转化为Scala的Iterable对象
*/
import scala.collection.JavaConverters._
val scalaT1 = first.asScala.toList
val scalaT2 = second.asScala.toList
// inner join要比较的是同一个key下,同一个时间窗口内的数据
if (scalaT1.nonEmpty && scalaT1.nonEmpty){
for (left <- scalaT1) {
for (right <- scalaT2) {
out.collect(OrderResultEvent(left.orderId,left.amount,right.itemId))
}
}
}
}
输出结果和上面完全一致。
Left Join
left join与right join由于Flink官方并没有给出明确的方案,无法通过join来实现,但是可以用coGroup来实现。
参考代码:
class LeftWindowJoinFunction extends CoGroupFunction[OrderLogEvent1,OrderLogEvent2,OrderResultEvent]{
override def coGroup(first: lang.Iterable[OrderLogEvent1],
second: lang.Iterable[OrderLogEvent2],
out: Collector[OrderResultEvent]): Unit = {
/**
* 将Java的Iterable对象转化为Scala的Iterable对象
*/
import scala.collection.JavaConverters._
val scalaT1 = first.asScala.toList
val scalaT2 = second.asScala.toList
for (left <- scalaT1) {
var flag = false // 定义flag,left流中的key在right流中是否匹配
for (right <- scalaT2) {
out.collect(OrderResultEvent(left.orderId,left.amount,right.itemId))
flag = true;
}
if (!flag){ // left流中的key在right流中没有匹配到,则给itemId输出默认值0L
out.collect(OrderResultEvent(left.orderId,left.amount,0L))
}
}
}
}
输出结果:
OrderResultEvent(1,22.1,121)
OrderResultEvent(2,22.2,122)
OrderResultEvent(4,22.3,0)
OrderResultEvent(5,22.5,125)
OrderResultEvent(4,22.4,124)
OrderResultEvent(6,22.6,0)
Right Join
和left join差不多,参考代码
class RightWindowJoinFunction extends CoGroupFunction[OrderLogEvent1,OrderLogEvent2,OrderResultEvent]{
override def coGroup(first: lang.Iterable[OrderLogEvent1],
second: lang.Iterable[OrderLogEvent2],
out: Collector[OrderResultEvent]): Unit = {
/**
* 将Java的Iterable对象转化为Scala的Iterable对象
*/
import scala.collection.JavaConverters._
val scalaT1 = first.asScala.toList
val scalaT2 = second.asScala.toList
for (right <- scalaT2) {
var flag = false // 定义flag,right流中的key在left流中是否匹配
for (left <- scalaT1) {
out.collect(OrderResultEvent(left.orderId,left.amount,right.itemId))
flag = true
}
if (!flag){ //没有匹配到的情况
out.collect(OrderResultEvent(right.orderId,0.00,right.itemId))
}
}
}
}
输出结果,与预期一致
OrderResultEvent(1,22.1,121)
OrderResultEvent(2,22.2,122)
OrderResultEvent(3,0.0,123)
OrderResultEvent(5,22.5,125)
OrderResultEvent(4,22.4,124)
OrderResultEvent(7,0.0,126)
Interval Join
间隔Join表示A流Join B流,B流中事件时间戳在A流所界定的范围内的数据Join起来,实现的是Inner Join。
Interval Join仅支持Event Time
在上面的示例中,我们将两个流“橙色”和“绿色”连接在一起,其下限为-2毫秒,上限为+1毫秒。
再次使用更正式的符号,这将转化为
orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound
思考:基于间隔的Join实现的是Inner Join语义,如图中时间戳为4的橙流没有join到任何数据。但如果想实现left join语义,应该怎么处理?
Internal Join参考代码:
leftOrderStream
.intervalJoin(rightOrderStream)
.between(Time.minutes(-2),Time.minutes(1))
.process(new IntervalJoinFunction)
.print()
class IntervalJoinFunction extends ProcessJoinFunction[OrderLogEvent1,OrderLogEvent2,OrderResultEvent]{
override def processElement(left: OrderLogEvent1,
right: OrderLogEvent2,
ctx: ProcessJoinFunction[OrderLogEvent1, OrderLogEvent2, OrderResultEvent]#Context,
out: Collector[OrderResultEvent]): Unit = {
out.collect(OrderResultEvent(left.orderId,left.amount,right.itemId))
}
}
输出结果:
OrderResultEvent(1,22.1,121)
OrderResultEvent(2,22.2,122)
OrderResultEvent(4,22.3,124)
OrderResultEvent(4,22.4,124)
OrderResultEvent(5,22.5,125)