- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 最大熵阈值python_李航统计学习方法(六)----逻辑斯谛回归与最大熵模型
weixin_39669638
最大熵阈值python
本文希望通过《统计学习方法》第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最优化算法的Java实现。本文属于初学者的个人笔记,能力有限,无法对著作中的公式推导做进一步发挥,也无法保证自己的理解是完全正确的,特此说明,恳请指教逻辑斯谛回归模型逻辑斯谛
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 最大熵原理
北航程序员小C
深度学习专栏机器学习专栏人工智能学习专栏机器学习人工智能算法
最大熵原理最大熵原理是概率模型学习的一个准则,其认为学习概率模型时,在所有可能的概率模型中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,然后在集合中选择熵最大的模型。直观地,最大熵原理认为要选择的概率模型首先必须满足已有的事实,即约束条件。在没有更多信息的情况下,那些不确定的部分都是等可能的。最大熵原理通过熵的最大化来表示等可能性,因为当X服从均匀分布时熵最大。最大熵模型最大熵原
- 最大熵模型
dreampai
直观理解image.png大熵模型在分类方法里算是比较优的模型,但是由于它的约束函数的数目一般来说会随着样本量的增大而增大,导致样本量很大的时候,对偶函数优化求解的迭代过程非常慢,scikit-learn甚至都没有最大熵模型对应的类库。最大熵的思想当你要猜一个概率分布时,如果你对这个分布一无所知,那就猜熵最大的均匀分布;如果你对这个分布知道一些情况,那么,就猜满足这些情况的熵最大的分布。运用最大熵
- 机器学习期末复习总结笔记(李航统计学习方法)
在半岛铁盒里
机器学习机器学习笔记学习方法
文章目录模型复杂度高---过拟合分类与回归有监督、无监督、半监督正则化生成模型和判别模型感知机KNN朴素贝叶斯决策树SVMAdaboost聚类风险PCA深度学习范数计算梯度下降与随机梯度下降SGD线性回归逻辑回归最大熵模型适用性讨论模型复杂度高—过拟合是什么:当模型复杂度越高,对训练集拟合程度越高,然而对新样本的泛化能力却下降了,此时出现overfitting(过拟合)与泛化能力:模型复杂度与泛化
- 统计学习方法笔记之逻辑斯谛模型与最大熵模型
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog逻辑斯谛回归(LogisticRegression)模型是经典的分类方法,而最大熵则是概率模型中学习的一个准则,将其推广到分类问题得到最大熵模型(maximumentropymodel)。两者都属于对数线性模型。逻辑斯谛模型逻辑斯谛分布设是连续随机变量,服从逻辑斯谛分布是指具有以下分布函数和密度函数:其中,是位置参数,为形状参数。逻辑斯谛分布的密度函数
- 最大熵模型
dreampai
在满足约束条件的模型集合中选取熵最大的模型,即不确定最大熵模型。最大熵模型就是要学习到合适的分布P(y|x),使得条件熵H(P)的取值最大。在对训练数据集一无所知的情况下,最大熵模型认为P(y|x)是符合均匀分布的。image.png
- 050B 基于最大熵模型软件(MaxEnt)和ArcGis地理系统的分布区(适生区)预测教程
生信小窝
arcgispython开发语言
课程内容目录(课程标题即课程内容):050B-1视频附带资料下载和密码:软件-数据-地图-文献下载-持续更新050B-2MaxEnt最大熵分布预测软件的下载安装050B-3ArcGis10.2软件的下载安装和参数设置-附带软件包(V3版)050B-4ArcGis10.4软件的下载安装和参数设置-附带软件包050B-5基于MaxEnt和ArcGis地理分布于测的科学分析流程介绍(V3版)050B-6
- 050B 基于最大熵模型软件(MaxEnt)和ArcGis地理系统的分布区(适生区)预测基础教程 更新2022-12
生信小窝
arcgis
050B-1课程附带资料050B-2最大熵模型软件(MaxEnt)的下载安装和不同打开方式演示(电脑参数配置)050B-3ArcGis10.2软件的下载安装和参数设置-附带软件包050B-4ArcGis10.4软件的下载安装和参数设置-附带软件包050B-5SPSS软件的下载安装与激活演示050B-6基于MaxEnt和ArcGis地理分布预测的科学分析流程介绍及参考文献说明050B-7物种分布数据
- 最大熵模型
MusicDancing
强化学习机器学习算法人工智能
1.最大熵原理学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。假设离散随机变量X的概率分布是P(X),则其熵为且满足0<=H(P)<=logN当且仅当X的分布是均匀分布时右边的等号成立,即当X服从均匀分布时,熵最大。直观地,最大熵原理认为要选择地概率模型首先必须满足已有事实(约束条件)。在没有更多信息的情况下,那些不确定的部分都是“等可能的”。通过熵的最大化来表示等可能性
- 自然语言处理相关词条
beck_zhou
算法研究(数据挖掘机器学习自然语言深度学习搜索引擎)自然语言处理语言
NLP领域自然语言处理计算语言学自然语言理解自然语言生成机器翻译文本分类语音识别语音合成中文分词信息检索信息抽取句法分析问答系统自动摘要拼写检查统计机器翻译[编辑]NLP专题隐马尔科夫模型最大熵模型条件随机场数学之美支持向量机机器学习SRILMMoses知网IRSTLMNLTK[编辑]NLP人物冯志伟俞士汶董振东黄昌宁黄曾阳周明姚天顺刘群宗成庆赵铁军詹卫东常宝宝刘挺王海峰哈工大中文信息处理人物谱中
- 最新:基于MAXENT模型的生物多样性生境模拟与保护优先区甄选、自然保护区布局优化评估及论文写作技巧
zmjia111
生态大气人工智能大数据云计算开发语言数据库架构
随着生物多样性全球大会的举办,不论是管理机构及科研单位、高校都在积极准备,根据国家林草局最新工作指示,我国将积极整合、优化自然保护地,加快推进国家公园体制试点,构建以国家公园为主体的自然保护地体系。针对我国目前已有自然保护区普遍存在保护目标不明确、保护成效低下和保护空缺依然存在等问题,科学的鉴定生物多样性热点保护区域与保护空缺显得刻不容缓。最大熵模型(Maxent模型)利用物种的分布与环境数据,采
- 基于maxent最大熵模型和arcgis地理系统对物种的适生区预测教程
生信小窝
ArcGISmaxent最大熵模型最大熵
050A-1软件-数据-地图-文献下载-持续更新050A-2MaxEnt最大熵分布预测软件的下载安装050A-3ArcGis10.2软件的下载安装和参数设置-附带软件包050A-4ArcGis10.4软件的下载安装和参数设置-附带软件包(待更新)050A-5基于MaxEnt和ArcGis地理分布于测的科学分析流程介绍050A-6Wordclim环境数据下载说明-末次盛冰期-当前和未来气候数据050
- Maxent模型学习
m0_61027476
Maxent学习经验分享
Maxent最大熵模型在实际操作做中,容易出现错误,该模型时非常容易上手,但会出现许多错误的模型。特别是大区域预测气候或生物栖息地。总结来说,一个简单的Maxent模型的结果,可以包括几个关键部分:一、模型表现的评估;二、阈值,判断是否有分布;三、预测的分布图;四、物种和环境的关系;五、环境变量对于这个物种分布的影响。一、模型表现评估二、Threshold阈值预测物种分布概率,但有些情况下,也可以
- 使用Maxent模型预测适生区
Odd_guy
SDMs经验分享r语言机器学习
Maxent模型因其在潜在适生区预测中稳健的表现,时下已经成为使用最广泛的物种分布模型。biomod虽然可以通过集成模型的优势来弥补数据量较小的劣势,但是其在使用和运算时间上的优势远不如Maxent,虽然最新的biomod2已经修复了一些bug,不过在使用中仍是会遇到很多问题。1Maxent模型Maxent模型即最大熵模型,与热力学概念类似,”熵“在此的含义为随机变量不确定性的度量,最大熵模型是指
- 数学之美(二十)
现在开始发呆
不要把鸡蛋放在一个篮子里——最大熵模型投资时说不要把鸡蛋放在一个篮子里,以降低风险,信息处理中也适用。数学上称这个原理为最大熵模型。网络搜索排名中用到的信息有上百种,怎么结合更好?在信息处理中,我们知道多种但不完全确定的信息,怎么用一个统一模型把它们很好地综合起来?比如输入法拼音转汉字,输入wangxiaobo,利用语言模型,根据有限的上下文(比如前两个字)能给出两个常见名字:王小波和王晓波,要确
- MAXENT模型的生物多样性生境模拟与保护优先区甄选、自然保护区布局优化评估
思考的小猴子
生态环境农业大数据生物多样性
随着生物多样性全球大会的举办,不论是管理机构及科研单位、高校都在积极准备,根据国家林草局最新工作指示,我国将积极整合、优化自然保护地,加快推进国家公园体制试点,构建以国家公园为主体的自然保护地体系。针对我国目前已有自然保护区普遍存在保护目标不明确、保护成效低下和保护空缺依然存在等问题,科学的鉴定生物多样性热点保护区域与保护空缺显得刻不容缓。最大熵模型(Maxent模型)利用物种的分布与环境数据,采
- 大学生学数学,不妨读《数学之美》这本书
令狐翀冲鸭
统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。是不是看到这一段,觉得眼都花了,其实很简单,里面都是大学和高中基本上学过的概念。《数学之美》带你领略以上算法的美!给大家推荐一本书,《数学之美》,29章,用具体例子
- 统计学习方法 拉格朗日对偶性
Air浩瀚
#ML算法机器学习人工智能
文章目录统计学习方法拉格朗日对偶性原始问题对偶问题原始问题和对偶问题的关系统计学习方法拉格朗日对偶性读李航的《统计学习方法》时,关于拉格朗日对偶性的笔记。在许多统计学习的约束最优化问题中,例如最大熵模型和支持向量机,常常使用拉格朗日对偶性(Lagrangeduality)将原始问题转换为对偶问题,通过求解对偶问题而得到原始问题的解。原始问题假设f(x)f(x)f(x),ci(x)c_i(x)ci(
- 梯度下降参数不收敛_数据分析|梯度下降算法
weixin_39622891
梯度下降参数不收敛
OX00统计学习三要素统计学习三要素:模型、策略、算法模型(=假设空间=所有备选模型):决策函数(y=f(x)),条件概率分布,两种形式(一种是判别式模型,一种是生成式模型)策略:确定标准,决定最优标准最重要是确定损失函数:测试值与真实值之间差别的惩罚。算法:如何选择最优模型;OX01常见的最优化算法判别模型:感知机,k近邻,决策树,逻辑回归,支持向量机,条件随机场,最大熵模型。生成模型:朴素贝叶
- 李航老师《统计学习方法》第6章阅读笔记
Chen_Chance
学习方法笔记
逻辑斯谛回归(logisticregression)是统计学习中的经典分类方法。最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型(maximumentropymodel)。逻辑斯谛回归模型与最大熵模型都属于对数线性模型。对数线性模型(Log-linearmodel)是一种统计模型,通常用于分析离散数据的关系,特别是在分类和回归问题中。这种模型的名称来源于其基本形式,其中自变量的对数
- Python手写最大熵模型
全栈项目讲解
python开发语言
Python手写最大熵模型1.算法思维导图数据预处理特征提取计算特征函数定义约束条件构建最大熵模型模型训练模型预测2.最大熵模型的手写必要性和市场调查最大熵模型是一种用于分类和回归的统计模型,具有广泛的应用领域,如自然语言处理、信息检索和图像识别等。手写最大熵模型的主要目的是理解算法的原理和实现细节,同时可以根据实际需求进行定制化的改进和优化。市场调查显示,对于需要高准确性和灵活性的分类和回归问题
- 最大熵模型详细解析 | 统计学习方法学习笔记 | 数据分析 | 机器学习
舟晓南
本文包括:1.最大熵模型简介2.最大熵的原理3.最大熵模型的定义4.最大熵模型的学习1.最大熵模型简介:最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。离散随机变量X的概率分布是P(X),则其熵是:式中,|X|是X的取值个数,当且仅当X的分布是均匀分
- 机器学习:最大熵模型
Sun_Sherry
机器学习机器学习人工智能
后续会补充案例。1最大熵模型 最大熵模型(MaximumEntropyModel,MEM)是由最大熵原理推导实现。这里先介绍最大熵定理,然后讲解最大熵模型的推导等过程。1.1最大熵原理 最大熵原理是概率模型学习的一个准则。最大熵原理认为,学习概率模型时,在所有可能的概率模型中,熵最大的模型时最好的模型。其数学表达式如下: 假设离散随机变量XXX的概率分布是P(X)P(X)P(X),则其熵为H
- 最大熵模型
自由调优师_大废废
1.介绍最大熵模型(maximumentropymodel,MaxEnt)是很典型的分类算法,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。2.原理我们知道熵定义的实际上是一个随机变量的不确定性,熵最大的时候,说
- 自然语言处理与其Mix-up数据增强方法报告
原创小白变怪兽
深度学习自然语言处理人工智能机器学习Mix-up深度学习
自然语言处理与其Mix-up数据增强方法1绪论1.课题背景与意义1.2国内外研究现状2自然语言经典知识简介2.1贝叶斯算法2.2最大熵模型2.3神经网络模型3DataAugmentationforNeuralMachineTranslationwithMix-up3.1数据增强3.2对于神经机器翻译的软上下文的数据增强3.3序列对序列的Mix-up数据增强4文章实验结果展示4.1论文①介绍的实验结
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不