- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 【北邮鲁鹏老师计算机视觉课程笔记】04 fitting 拟合
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】04fitting拟合1拟合的任务如何从边缘找出真正的线?存在问题①噪声②外点、离群点③缺失数据2最小二乘存在的问题3全最小二乘度量的是点到直线的距离而不是点在y方向到直线的距离提示:点到直线的距离公式归一化后保留分子4极大似然估计5鲁棒的最小二乘不直接用点到直线的距离σ\sigmaσ来控制点到直线距离的影响,太远的点就是噪声点,就不考虑了。r=10的时候,也认为
- 机器学习---学习与推断,近似推断、话题模型
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.学习与推断基于概率图模型定义的分布,能对目标变量的边际分布(marginaldistribution)或某些可观测变量为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问题,通常使用极大似然估计或后验概率估计求解。单若将参数视为待推测的变量,则参数估计过程和推断十分相似,可以“吸收”到推断问题中。假设图模型所对应的变量集x={x1,x2,···,xn}能分为XE
- 如何通过极大似然估计 MLE Maximum Likelihood Estimation 获得 交叉熵 Cross Entropy 以及 均方损失函数 Mean Square Loss ?
shimly123456
StanfordCS229个人开发
似然函数定义以及极大似然估计MLE(完成)---------------------------------------------------------------------------------------start注意:P(A|B)并不总是等于P(B|A),原因如下:首先要明白一个事情,什么是似然函数?以下是CHATGPTMathSolver的回答:我自己解释一下,意思就是:观察到一组
- 最大期望算法(EM算法)
陇院第一Sweet Baby
算法数据结构c语言
#include//最大期望算法(EM算法)//EM算法是一种启发式的迭代算法,用于实现用样本对含有隐变量的模型的参数做极大似然估计。//EM算法通过迭代逼近的方式用实际的值带入求解模型内部参数intmain(){intm,n,r;scanf("%d%d",&m,&n);printf("%d和%d的最大公因子是\n",m,n);while(n!=0){r=m%n;m=n;n=r;}printf("
- 2018-07-03
lanjly
[TOC]极大似然估计的一般思想极大似然估计(MaximumLikelihood),顾名思义,就是根据似然度(也就是可能性,likelihood)对感兴趣的参数(如正态分布的\mu与\sigma,指数分布的\lambda)进行估计。极大似然估计的原理是一种非常直观的思想,那就是谁的可能性大,谁的脸面就大。从一个非常简单的例子来看一下极大似然估计的思想:有A、B两个箱子:A箱子有99个白球,1个黑球
- 十分钟学习极大自然似估计
培根炒蛋
EndlessLethe原创文章,转载请注明:转载自小楼吹彻玉笙寒原文链接地址:十分钟学习极大似然估计前言参数估计是机器学习里面的一个重要主题,而极大似然估计是最传统、使用最广泛的估计方法之一。本文主要介绍了极大似然估计,简单说明了其和矩估计、贝叶斯估计的异同,其他估计(如MAP)并不涉及。为什么要用极大似然估计对于一系列观察数据,我们常常可以找到一个具体分布来描述,但不清楚分布的参数。这时候我们
- 极大似然概率
zidea
MachineLearninginMarketingEM算法极大似然函数极大似然估计是机器学习中比较重要的概念,一些专业教程往往容易忽略对其解释。在开始介绍前,我们需要先理解一下似然,似然也就是像这样的意义,也就是想这样(你看到的或是观察到的结果或数据)的可能性。例如身高175cm,体重60kg根据数据。我们来估计他是男生概率。极大似然估计是一种统计学的方法,我们用已知的样本数据分布去推测具体的分
- 4 朴素贝叶斯
奋斗的喵儿
1定义朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法2.算法及实例极大似然估计:在这里插入图片描述在这里插入图片描述在这里插入图片描述贝叶斯估计:在这里插入图片描述在这里插入图片描述总结:朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布P(X,Y),然后求后验概率分布P(Y|X)。即利用训练数据学习P(X|Y)和P(Y)的估计,得到联合概率分布在这里插入图片描述朴素贝
- 机器学习算法之EM算法
浅白Coder
机器学习算法机器学习人工智能
一、EM算法EM算法最初是为了解决缺失数据情况下参数估计问题;根据已经给出的观察数据,估计出模型参数的值,然后根据得到的模型参数去估计缺失的数据,再由模型的观察数据和估计的确实数据去预测模型参数值,反复迭代,直至最后收敛。1.1预备知识:1.1.1.极大似然估计:根据已观察到的数据去最大化该数据出现概率,得到的参数即为所求。(已观察到的数据理应出现的概率比较大,比较合理)1.1.2.Jensen不
- 极大似然估计(转自知乎)
暧昧旳黑夜
转自知乎:https://www.zhihu.com/question/24124998/answer/41420549我们假设硬币有两面,一面是“花”,一面是“字”。一般来说,我们都觉得硬币是公平的,也就是“花”和“字”出现的概率是差不多的。如果我扔了100次硬币,100次出现的都是“花”。在这样的事实下,我觉得似乎硬币的参数不是公平的。你硬要说是公平的,那就是侮辱我的智商。这种通过事实,反过来
- 机器学习 --- 指数族分布
建模君Assistance
数学建模算法算法
一、背景二、高斯分布的指数族形式三、对数配分函数与充分统计量的关系三、极大似然估计与充分统计量四、最大熵角度总结最后数学建模精选资料共享,研究生学长数模指导,建模比赛思路分享,关注我不迷路!建模指导,比赛协助,有问必答,欢迎打扰
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第4章朴素贝叶斯法4.1朴素贝叶斯法的学习与分类4.1.1基本方法4.1.2后验概率最大化的含义4.2朴素贝叶斯法的参数估计4.2.1极大似然估计4.2.2学习与算法4.2.3贝叶斯估计代码实践GaussianNB高斯朴素贝叶斯scikit-learn实例scikit-learn:伯努利模型和多项式模型《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习
- 大数据期望最大化(EM)算法:从理论到实战全解析
星川皆无恙
机器学习与深度学习大数据人工智能大数据大数据算法深度学习人工智能
文章目录大数据期望最大化(EM)算法:从理论到实战全解析一、引言概率模型与隐变量极大似然估计(MLE)Jensen不等式二、基础数学原理条件概率与联合概率似然函数Kullback-Leibler散度贝叶斯推断三、EM算法的核心思想期望(E)步骤最大化(M)步骤Q函数与辅助函数收敛性四、EM算法与高斯混合模型(GMM)高斯混合模型的定义分量权重E步骤在GMM中的应用M步骤在GMM中的应用五、实战案例
- 贝叶斯分类器(公式推导+举例应用)
Nie同学
机器学习机器学习分类
文章目录引言贝叶斯决策论先验概率和后验概率极大似然估计朴素贝叶斯分类器朴素贝叶斯分类器的优点与缺点优点缺点总结实验分析引言在机器学习的世界中,有一类强大而受欢迎的算法——贝叶斯分类器,它倚仗着贝叶斯定理和朴素的独立性假设,成为解决分类问题的得力工具。这种算法的独特之处在于其对概率的建模,使得它在面对不确定性和大规模特征空间时表现卓越。本文将深入探讨贝叶斯分类器,首先通过详细的公式推导带你走进其内部
- 快速了解——逻辑回归及模型评估方法
小林打怪中
机器学习人工智能
一、逻辑回归应用场景:解决二分类问题1、sigmoid函数1.公式:2.作用:把(-∞,+∞)映射到(0,1)3.数学性质:单调递增函数,拐点在x=0,y=0.5的位置4.导函数公式:f′(x)=f(x)(1–f(x))2、相关概念概率:事件发生的可能性联合概率:两个或多个随机变量同时发生的概率条件概率:表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)极大似然估计:根据观测到的结果
- 最小二乘法,极大似然估计,交叉熵
你若盛开,清风自来!
机器学习深度学习人工智能算法
比较两种概率模型的差距的方法最小二乘法带有绝对值,在定义域上不是全程可导的,所以说通常办法就是对他们求平方。为什么叫最小二乘法:平方就是乘2次,在这个式子中找最小的值,称之为最小二乘法。这个最小值找到了,就是相当于神经网络中和人脑中判断猫的模型最相近的那个结果了缺点:用这个作为损失函数非常麻烦,不适合梯度下降。极大似然估计似然值是真实的情况已经发生,我们假设他有很多模型,在某个概率模型下发生这种情
- 逻辑回归、深度学习简介、反向传播
梦码城
深度学习深度学习机器学习概率论
LogisticRegression逻辑回归模型介绍LogisticRegression虽然被称为回归,但其实际上是分类模型,并常用于二分类。LogisticRegression因其简单、可并行化、可解释强深受工业界喜爱。Logistic回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。Logistic分布是一种连续型的概率分布,其分布函数和密度函数分别为:Logistic分布
- 概率论与数理统计 Chapter4. 参数估计
Espresso Macchiato
基础数学概率论参数估计极大似然估计矩估计区间估计
概率论与数理统计Chapter4.参数估计1.基础概念1.总体2.样品3.统计量1.样本方差2.k阶原点矩3.k阶中心矩2.参数的点估计1.矩估计1.正态分布2.指数分布3.均匀分布4.二项分布5.泊松分布2.极大似然估计1.正态分布2.指数分布3.二项分布4.均匀分布5.泊松分布3.贝叶斯估计3.点估计的优良性准则1.无偏性1.均值2.方差3.标准差2.最小方差无偏估计3.相合性4.区间估计1.
- 神经网络中的损失函数(上)——回归任务
liuzibujian
神经网络回归人工智能机器学习损失函数
神经网络中的损失函数前言损失函数的含义回归任务中的损失函数平均绝对误差(MAE)L1范数曼哈顿距离优点缺点均方误差(MSE)均方误差家族L2范数欧氏距离极大似然估计优点缺点smoothL1LossHuber总结前言神经网络是深度学习的基础。在神经网络中,损失函数和优化函数是两个非常重要的概念,它们共同决定了模型的性能和训练效果。本文将介绍神经网络中比较常用的损失函数。损失函数的含义损失函数是用于量
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- EM 算法(Expectation Maximization)
大雄的学习人生
EM算法是一种重要的解决含有隐变量问题的参数估计方法算法释义EM算法是用来解决含有隐变量的概率模型参数的极大似然估计,或者叫极大后验概率估计。它是一种迭代算法,每次迭代由两步组成:E步,求期望,M步,求极大。算法步骤输入:观测变量数据Y,隐变量数据Z,联合分布P(Y,Z|θ),条件分布P(Z|Y,θ)输出:模型参数θ(T)(1)初始化模型参数:θ(0)(2)迭代求解,直至收敛,t=0,1,...,
- EM算法原理解释及公式推导
烟雨人长安
机器学习
本文参考的是人人都懂EM算法-August的文章-知乎这篇文章目录一、极大似然概述二、EM算法2.1EM算法描述2.2EM公式推导三、EM算法案例一、极大似然概述假设我们需要调查我们学校学生的身高分布。我们先假设学校所有学生的身高服从正态分布。(注意:极大似然估计的前提一定是要假设数据总体的分布,如果不知道数据分布,是无法使用极大似然估计的),这个分布的均值和方差未知,如果我们估计出这两个参数,那
- EM算法-细节讲解公式推导
闯闯爱打鼓
EM算法:EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望;M步,求极大。所以这一算法称为期望极大算法(expectationmaximizaiton)。EM算法的引入:概率模型有时候含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计方法估计模型
- EM算法公式详细推导
一碗姜汤
统计学习方法算法机器学习概率论
EM算法是什么?EM算法是一种迭代算法,用于含隐变量概率模型参数的极大似然估计,或极大后验概率估计。EM算法由两步组成:E步,求期望;M步:求极大。EM算法的优点是简单性和普适性。符号说明::观测数据,又称不完全数据:隐变量:完全数据:模型参数:第次迭代后的估计值:联合分布:条件分布:似然EM算法的导出我们面对一个含有隐变量的概率模型,目标是极大化关于的对数似然函数:我们把关于的依赖体现到我们的模
- 工智能基础知识总结--什么是EM算法
北航程序员小C
深度学习专栏人工智能学习专栏机器学习专栏算法机器学习人工智能深度学习
什么是EM算法EM算法用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法详细过程:输入:观测变量数据Y,隐变量数据Z,联合分布P(Y,Z∣θ)P(Y,Z|\theta)P(Y,
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d