- Python通过YOLO格式TXT标签文件在图像中画框
CHERISH_KDX
pythonYOLO人工智能
使用场景检测数据集标注是否有误:在目标检测算法中需要标注自己的数据集,为了更加方便的检查数据集标注是否有误,可以使用该工具将标注结果绘制在图像中并查看。美化识别结果中的检测框:在一些目标检测场景中,YOLO检测算法原始的检测框绘制会导致重叠、颜色冲突、字体过大等问题。可以使用该工具进行修改。代码importosimportcv2classcheck_label:def__init__(self,c
- YOLOv8制作自己的实例分割数据集保姆级教程(包含json转txt)
Sir小珂
YOLOpython深度学习人工智能
1.数据准备首先对原始数据集进行整理,将标注好的图像和标签分别放在两个文件夹中,同时额外新建两个文件夹,用于存放转换完的标签与划分后的数据集。1.1将json格式文件转换为txt格式新建json2txt.py文件,将代码中的文件路径修改为自己的路径。❗❗❗代码中第43行的classes中存放的是自己数据集的分类标签,记得修改成自己的。importjsonimportosfromtqdmimport
- 基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
深度学习&目标检测实战项目
YOLOui分类数据挖掘目标跟踪
1.引言烟雾是火灾发生的一个重要早期信号。烟雾检测能够在火灾初期及时识别并报警,为火灾的扑灭争取宝贵的时间。因此,烟雾检测的研究一直是计算机视觉领域中的一个热点问题。近年来,随着深度学习技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。在这篇博客中,我们将介绍如何使用YOLOv5模型进行烟雾检测
- 智能标注工具 T-Rex Label
leo0308
基础知识目标检测和跟踪机器人计算机视觉目标检测
工具地址:https://trexlabel.com/该工具可以进行自动化标注,只需框选出一个标记,就可以自动标注出图片中所有的其他同类物体。支持导出YOLO和COCO格式。首先使用智能标注,可以标注出大部分的物体,如果有错的或者漏的,可以删除,也可以使用矩形框工具进行手动增加。
- YOLO报错:ModuleNotFoundError: No module named ‘ultralytics.nn.modules.conv‘
欧迪小白
YOLOpython
最近在打包项目到另一台电脑上运行时发现原本可以运行的项目会报错:ModuleNotFoundError:Nomodulenamed‘ultralytics.nn.modules.conv’;‘ultralytics.nn.modules’isnotapackage。明明项目的包都是一样的,版本也相同,就是会报错。查询百度谷歌后发现大多数都是说版本问题,但是我无论修改什么版本都有问题,最后使用pip
- 深度学习项目十一:mmdetection训练自己的数据集
小啊磊_Vv
深度学习和视觉项目实战目标跟踪人工智能计算机视觉python深度学习
mmdetection训练自己的数据集这里写目录标题mmdetection训练自己的数据集一:环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码三:训练dataset数据文件配置configs1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py
- 【基于国产RK3588-NPU的yolov5的AI智能盒子】
贝壳里的沙
人工智能
基于国产RK3588-NPU的yolov5的AI智能盒子背景识别效果区别Python版本目标识别实现cmake(c/c++)版本实现背景前面写了一篇关于基YOLOV5实现的AI智能盒子的实现方案,这篇文章着重讲了如何在NVIDIA-英伟达芯片上如何实现目标识别的过程(可能已经被官方屏蔽了)。但是因为中美芯片限制问题,很多朋友联系到我,跟我提了是否可以基于国产芯片来迁移yolov5框架平台?国产芯片
- yolov5代码详解--1.python代码脚本
三炭先生
yolo算法YOLOpython算法
一、detect.py作为YOLOv5模型推理的核心执行文件,detect.py实现了从数据加载到结果输出的完整目标检测流水线。本文只讲代码中最主要的opt内函数的含义,这是detect最核心的东西,至于其他的代码注释我会放在下面,有什么不懂可以评论区提问。下面对每个命令行参数进行详细介绍,说明它们在检测推理过程中的含义和作用:--weights指定模型权重文件的路径(或多个路径),也可以是远程T
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- YOLOv7-Tiny:轻量化实时目标检测的革新实践
追寻向上
YOLO目标检测人工智能
一、模型定位与核心优势YOLOv7-Tiny作为YOLOv7系列的轻量级版本,专为边缘计算设备和实时检测场景设计。相比标准YOLOv7,其参数量减少约60%(仅6.02M),计算量降至13.2GFLOPs,在保持较高检测精度的同时,推理速度提升至68FPS(NVIDIAV100)。该模型适用于无人机、嵌入式设备、移动端等资源受限场景,在实时性与精度之间实现了极佳平衡。二、模型架构创新主干网络优化深
- PiscTrace以YOLOv12为例定义兴趣区域提高识视图别效率
那雨倾城
PiscTraceOpenCV应用人工智能YOLO计算机视觉视觉检测pythonopencv
在PiscTrace中,裁剪功能允许开发者将图像分割为感兴趣区域(ROI),然后针对此区域进行特定的处理,最终将结果重新合成。这种方法不仅可以大幅提高计算效率,还能够在处理高分辨率图像时避免由于输入尺寸过大导致的小目标无法被识别的问题。2160*38401.裁剪与贴合的运算流程在传统的机器视觉模型中,由于输入尺寸的固定要求,一旦图像尺寸较大,缩放后的目标往往会变得模糊,导致小目标难以被精确识别。而
- Ardupilot开源无人机之Geek SDK进展2025Q1
lida2003
ArduPilotLinux开源无人机穿越机
Ardupilot开源无人机之GeekSDK进展2025Q11.源由2.内容汇总2.1【jetson-fpv】YOLOINT8+coco8dataset精度降级2.2【OpenIPC-Configurator】OpenIPCConfigurator固件升级失败2.3【OpenIPC-Adaptive-link】OpenIPCRF信号质量相关显示2.4【OpenIPC-msposd】.srt/.os
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 基于Flask和VUE的YOLOv5目标检测模型部署
薄泳蕙Howard
基于Flask和VUE的YOLOv5目标检测模型部署基于Flask和VUE的YOLOv5目标检测模型部署本资源文件提供了一个基于Flask开发后端、VUE开发前端框架的完整项目,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能项目地址:https://gitcode.com/open-source-toolkit/20e
- 基于Flask和VUE的YOLOv5目标检测模型部署:轻松实现WEB端目标检测
咎尉裕Lilah
基于Flask和VUE的YOLOv5目标检测模型部署:轻松实现WEB端目标检测【下载地址】Yolov5-Flask-VUE基于Flask和VUE的YOLOv5目标检测模型部署本项目提供了一个基于Flask开发后端、VUE开发前端的框架,用于在WEB端部署YOLOv5目标检测模型。通过本项目,您可以轻松地将YOLOv5模型集成到您的WEB应用中,实现目标检测功能项目地址:https://gitcod
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- 深度学习篇---Opencv中的机器学习和深度学习
Ronin-Lotus
深度学习篇图像处理篇深度学习opencv机器学习python
文章目录前言一、OpenCV中的机器学习1.概述2.使用步骤步骤1:准备数据步骤2:创建模型步骤3:训练模型步骤4:预测3.优点简单易用轻量级实时性4.缺点特征依赖性能有限二、OpenCV中的深度学习1.概述图像分类(如ResNet、MobileNet)目标检测(如YOLO、SSD)语义分割(如DeepLab)人脸检测(如OpenFace)2.使用步骤步骤1:加载模型步骤2:准备输入数据步骤3:推
- 基于YOLOv5的无人机农田监测系统实现与UI界面设计
深度学习&目标检测实战项目
YOLO无人机ui深度学习分类目标检测
一、引言随着无人机技术和深度学习算法的快速发展,农业领域逐渐引入了智能化监测手段。无人机农田监测结合了无人机的高空拍摄能力和计算机视觉技术,能够实时获取农田的图像数据,并对作物生长状态、病虫害检测、土地使用情况等进行智能分析。深度学习中的目标检测技术,如YOLOv5,能够帮助实现精准的农田监测,提供自动化的解决方案。在这篇博客中,我们将介绍如何利用YOLOv5进行无人机农田监测,如何使用图形用户界
- YOLOv12改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率(二次改进A2C2f)
Limiiiing
YOLOv12改进专栏YOLOv12计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于MobileMQA模块的YOLOv12目标检测改进方法研究。MobileNetv4中的MobileMQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。文章目录一、本文介绍二、MobileMQA注意力原理三、MobileMQA的实现代码四、创新模块4.1改进点⭐五、添加步骤5.1修改一5.2修改
- 《基于yolov5s的水稻病虫害图像识别应用》开题报告
大数据蟒行探索者
毕业论文/研究报告YOLO软件工程自动化运维软件构建性能优化
1.研究的目的和意义一、研究目的农作物病虫害是全球农业生产中的主要威胁之一,每年因病虫害造成的作物减产和经济损失相当巨大。随着世界人口的增长,对粮食的需求不断增加,如何提高农作物产量、减少病虫害损失,成为农业生产中需要解决的核心问题。传统的病虫害识别方法主要依赖于农民的经验或农业专家的现场诊断,这种方式不仅耗费大量时间和人力,而且易受人为因素影响,准确率不高,且不具备可持续性,特别是在大规模农业生
- 目标检测YOLO实战应用案例100讲-TDI线阵相机
林聪木
数码相机计算机视觉人工智能
目录知识储备图像基础知识分辨率单位及换算算法原理一、TDI基本原理二、信噪比提升机制三、时间同步机制四、TDIvs传统线扫描技术五、TDI的技术挑战六、最新的TDI技术发展知识储备图像基础知识首先什么是机器视觉?计算机视觉就是让计算机去理解获取数字图像与视频中的信息。最终实现一个与人类视觉系统实现相同功能的自动化系统。什么是机器视觉中的图像的前置知识——颜色模型?最为常用的颜色模型,分别是RGB颜
- 探索高性能AI识别和边缘计算 | NVIDIA Jetson Orin Nano 8GB 开发套件测评总结
Loving_enjoy
实用技巧人工智能边缘计算
#NVIDIAJetsonOrinNano8GB测评:当边缘计算遇上"性能暴徒",树莓派看了想转行引言:比咖啡机还小的"AI超算",却让开发者集体沸腾2025年的某个深夜,程序员老王盯着工位上巴掌大的NVIDIAJetsonOrinNano,突然热泪盈眶——这个尺寸堪比奥利奥饼干盒的设备,跑YOLOv5的速度竟比他去年买的游戏本还快3倍!隔壁桌用树莓派做毕设的大学生小张探头一看,默默把刚买的Ras
- 【YOLOv12改进trick】StarBlock引入YOLOv12,创新涨点优化,含创新点Python代码,方便发论文
zy_destiny
YOLOv12及改进优化创新人工智能深度学习机器学习YOLO神经网络开发语言python
改进模块:StarBlock解决问题:采用StarBlock将输入数据映射到一个极高维的非线性特征空间,生成丰富的特征表示,使得模型在处理复杂数据时更加有效。改进优势:简单粗暴的星型乘法涨点却很明显适用场景:目标检测、语义分割、自然语言处理等多种场景高效紧凑的模型,不适用于大模型思路来源:CVPR2024《RewritetheStars》目录1.设计动机2.启发来源3.将StarBlock引入YO
- 【AI】YOLOv7部署在NVIDIA Jetson Nano上
郭老二
AI人工智能YOLO
1、环境搭建参考博客:【AI】JetsonNano烧写SD卡镜像【AI】YOLOv7部署在NVIDIAJetsonTX2上2、下载编译2.1源码下载https://github.com/AlexeyAB/darknet2.2编译1)修改MakefileGPU=1CUDNN=1CUDNN_HALF=0
- 基于YOLOv5深度学习的田间杂草检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
引言随着农业科技的进步,智能化农业越来越受到重视,尤其是通过计算机视觉技术对作物进行监测和管理。在农业生产中,杂草的生长对作物的生长产生了负面影响,因此准确地检测和识别田间杂草至关重要。本文将详细介绍如何构建一个基于深度学习的田间杂草检测系统,使用YOLOv5模型进行目标检测,并提供一个用户友好的界面。我们将分步骤进行,包括环境配置、数据集准备、模型训练、实时杂草检测系统的实现等内容。目录引言目录
- 自动扶梯人员摔倒掉落识别检测数据集VOC+YOLO格式5375张2类别
FL1623863129
YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):5375标注数量(xml文件个数):5375标注数量(txt文件个数):5375标注类别数:2标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["anomaly",
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- YOLOv10改进之MHAF(多分支辅助特征金字塔)
清风AI
深度学习算法详解及代码复现人工智能计算机视觉深度学习算法机器学习
YOLOv10架构YOLOv10的架构主要由主干网络、特征金字塔和预测头三部分组成。主干网络采用改进的Darknet结构,增强特征提取能力。特征金字塔模块使用多尺度特征融合技术,提高对不同大小目标的检测效果。预测头则负责生成最终的检测结果。这种结构设计使得YOLOv10在保持高效率的同时,能够有效处理各种尺度的目标,为后续的改进奠定了基础。检测性能在探讨YOLOv10的性能提升之前,我们需要了解其
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s